Chuletas y apuntes de Matemáticas de Universidad

Ordenar por
Materia
Nivel

Probabilidad y Variables Aleatorias: Conceptos Esenciales para el Aprendizaje

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 6,04 KB

Probabilidad: Conceptos Fundamentales

La probabilidad es una medida numérica de la posibilidad de que ocurra un suceso. Nos indica cuán posible es que un evento determinado acontezca.

Tipos de Probabilidad

  • Probabilidad a priori: Se calcula como el número de casos favorables dividido por el número total de casos posibles, antes de realizar el experimento.
  • Probabilidad a posteriori (o Frecuencia Relativa): Es el cociente entre el número de veces que un suceso ocurre y el número total de experimentos realizados. Se basa en la observación de resultados pasados.

Postulados Fundamentales de la Probabilidad

  • La probabilidad de un suceso A, denotada como P(A), es la suma de las probabilidades de los resultados básicos que constituyen el suceso A.
  • Para
... Continuar leyendo "Probabilidad y Variables Aleatorias: Conceptos Esenciales para el Aprendizaje" »

Ecuación del Plano en el Espacio R3: Ejemplos y Conceptos Clave

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 3,33 KB

Ecuación del Plano en el Espacio R3

Ecuación General del Plano

La ecuación general del plano es de la forma:

ax + by + cz + d = 0

Esto significa que un punto de coordenadas R(x, y, z) pertenece al plano si y solo si cumple la igualdad anterior (a, b, c y d son números reales fijos).

Ecuación Vectorial Paramétrica de un Plano

Dado un punto P(a, b, c) y dos vectores direccionales no paralelos ~a = (a1, a2, a3) y ~b = (b1, b2, b3), la ecuación vectorial del plano que pasa por el punto P y queda determinado por las direcciones de ~a y ~b es:

~r = ~p + λ * ~a + μ * ~b

La variación de los parámetros λ y μ van determinando los distintos puntos R(x, y, z) del plano. Igualando por coordenadas esta última expresión se obtiene la ecuación paramétrica... Continuar leyendo "Ecuación del Plano en el Espacio R3: Ejemplos y Conceptos Clave" »

Fundamentos de Probabilidad y Estadística: Conceptos Clave y Ejemplos Prácticos

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 9,25 KB

1. Conceptos Fundamentales de Probabilidad

¿Qué es la Probabilidad?

La probabilidad es la medida numérica de la posibilidad de que un evento ocurra. Se expresa como un número entre 0 y 1 (o 0% y 100%), donde 0 indica imposibilidad y 1 indica certeza.

Términos Esenciales en Probabilidad

  • Concepto de Evento: Un resultado o un conjunto de resultados de un experimento aleatorio. El documento original lo describe como “lo que ocurre, sobre lo que puede ocurrir”.
  • Población: El conjunto total de elementos o individuos de interés en un estudio.
  • Muestra: Un subconjunto representativo de casos o individuos seleccionados de una población.
  • Experimento Aleatorio: Un proceso que genera eventos con resultados inciertos, pero cuyos posibles resultados
... Continuar leyendo "Fundamentos de Probabilidad y Estadística: Conceptos Clave y Ejemplos Prácticos" »

Juegos Bipersonales: Competencia Estricta, Suma Cero y Estrategias Matriciales

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 6,41 KB

Definición: Un juego bipersonal en forma estratégica (I = {1, 2}, X = X1 × X2, π = (π1, π2)) se dice que es estrictamente competitivo cuando cumple:

π1(x, y) > π1(x', y') si y sólo si π2(x, y) < π2(x', y') para todo x, x' ∈ X1, ∀y, y' ∈ X2.

Propiedades de los Juegos Estrictamente Competitivos

Propiedad 1: En un juego estrictamente competitivo, se cumple π1(x, y) = π1(x', y') si y sólo si π2(x, y) = π2(x', y') ∀x, x' ∈ X1, ∀y, y' ∈ X2.

Propiedad 2: En un juego estrictamente competitivo, se cumple π1(x, y) > π1(x', y') si y sólo si π2(x, y) < π2(x', y') ∀x, x' ∈ X1, ∀y, y' ∈ X2.

Propiedad 3: Todo par de estrategias (x, y), y en particular los Equilibrios de Nash (E.N.), es Pareto óptimo.

Demostración:

... Continuar leyendo "Juegos Bipersonales: Competencia Estricta, Suma Cero y Estrategias Matriciales" »

Análisis de ANOVA de dos factores con SPSS

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 1,97 KB

ANOVA DE DOS FACTORES

SPSS:

En vista de variables: declarar variables

  • Monto
  • Ingreso: valores (1, 2,3)
  • Tarjeta: Valores (1, 2,3)

üAnalizar > modelo lineal general > univariante

Variable dependiente: monto ahorrado (números)

Factores fijos: ingreso y tarjeta

Guardar > poner residuos no tipificados

Opciones > marcar pruebas de homogeneidad

Post hoc > jalar los factores > marcar Duncan

üAnalizar > pruebas no paramétricas > cuadro de diálogos antiguos > KS de 1 muestra > jalar residuos

SUPUESTOS:

Normalidad de errores

Ho: Los errores siguen una distribución normal (SI)

Hi: No siguen una distribución normal

Alfa: 0,05

Sig (K – S) > Alfa NoRHo

Sig (K – S) = 0,200 > 0,05 NoRHo

Se cumple el supuesto de normalidad de errores

Homogeneidad

... Continuar leyendo "Análisis de ANOVA de dos factores con SPSS" »

Teorema de Euler y Curvatura de Gauss: Exploración Detallada

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 4,7 KB

Teorema de Euler: Fundamentos y Aplicaciones

Teorema de Euler: Sea M=(U,X) una Superficie Simple Propia, p=X(u10,u20) un punto cualquiera pero fijo de M. Sea Y ∈ TpM tal que ||Y||=1. Entonces:
II(Y,Y)=κ1*cos2(θ)+κ2*sen2(θ) donde θ es el ángulo de Y con X(1).
Demostración: Recordemos: Si L es autoadjunta, existe una base ortonormal: B formada por vectores propios de L. La matriz coordenada de L en B es una matriz diagonal. En nuestro caso, por ser la aplicación de Weingarten L autoadjunta, existe {X(1),X(2)} base ortonormal de TpM formada por vectores propios de L. Tenemos entonces que:
Y = α1X(1)2X(2)
II(Y,Y) = (α1 α2)*[[κ1 0];[0 κ2]]*(α1 α2)= (α1)2κ1 + (α2)2κ2
<Y,X(1)> =<α1X(1)2X(2), 1*X(1)+0*X(2)>=α1
... Continuar leyendo "Teorema de Euler y Curvatura de Gauss: Exploración Detallada" »

Conceptos Clave del Álgebra Lineal: Vectores, Espacios y Transformaciones

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 15,05 KB

Aplicaciones (Funciones)

Una función f: A → B es una aplicación cuando todo elemento del conjunto inicial A (dominio) tiene una única imagen en el conjunto final B (codominio).

Dos tipos importantes de aplicaciones son:

  • Inyectiva: Una aplicación f es inyectiva si a elementos distintos del dominio les corresponden imágenes distintas en el codominio. Es decir, si f(x₁) = f(x₂), entonces x₁ = x₂.
  • Suprayectiva (o Sobreyectiva): Una aplicación f es suprayectiva si todo elemento del codominio es imagen de al menos un elemento del dominio. Es decir, para todo y ∈ B, existe al menos un x ∈ A tal que f(x) = y.

Espacios Vectoriales

Definición de Espacio Vectorial

Sea V un conjunto no vacío, K un cuerpo (como el de los números reales ℝ... Continuar leyendo "Conceptos Clave del Álgebra Lineal: Vectores, Espacios y Transformaciones" »

Neurociencia: Conceptos clave y términos importantes

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 3,32 KB


1) William James.


2) Orbrist -> acoplamiento cardiaco somático.


3) PE -> N1.


4) Ondas QRS.


5) Actividad vascular.


6) Tomografía por emisión de positrones.


7) Sacos Vestibulares -> Utrículo y Sáculo.


8) Tacto afectivo ____ -> piel vellosa / piel lampiña / x.


9) Tacto fino / grueso.


10) Corteza somatosensorial.


11) Dolor (estímulos aversivos).


12) Sabor dulce.


13) Insulina.


14) Péptido Y.


15) Órgano de Corti.


16) Células ciliadas externas.


17) Controlar respuesta agresiva -> serotonina / noradrenalina / x.


18) Dilatación contracción de la pupila en la luz músculos.


19) Ondas lentas -> fases del sueño norem / fases 1 y 2 del sueño norem / fases 3 y 4 norem.


20) Coniocelular.


21) Bulbo olfatorio -> epitelio nasal.


22) Pérdida del

... Continuar leyendo "Neurociencia: Conceptos clave y términos importantes" »

Aplicación Práctica de la Inferencia Estadística: Pruebas de Hipótesis y Estimación de Parámetros

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 4,49 KB

1.
Un parámetro es una función definida sobre una variable que caracteriza a una población y se presenta con letras griegas.

Verdadero

2.
Un estimador es mas preciso que otro, si la varianza del primero es menor que la del segundo.

Verdadero


3. la consistencia se refiere a la precisión de los estimadores, de tal manera que un estimador preciso también es insesgado.
Falso porque tiene sesgo

4. Se llama espacio muestral al conjunto de todos los resultados posibles de un proceso experimental u observacional.

Verdadero


5. El valor p es la probabilidad exacta de cometer error tipo II.

Falso

 Es error tipo I.


Lechones de 7-9 Kg

M=6,7Kg   σ=0,5Kg  X1=7Kg   X2=9Kg

Z=X-M/σ


Z=7kg - 6,7kg / 0,5kg = 0.6


Z=9kg - 6,7kg / 0,5kg = 4,6

=P(7<X<9) = P(0,

... Continuar leyendo "Aplicación Práctica de la Inferencia Estadística: Pruebas de Hipótesis y Estimación de Parámetros" »

Análisis Estadístico: Ejemplos Prácticos y Aplicaciones

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 3,57 KB

Conceptos Estadísticos Fundamentales

A continuación, se presentan algunos conceptos clave en estadística:

  • Parámetro: Es una función definida sobre una variable que caracteriza a una población y se representa con letras griegas.
  • Estimador: Un estimador es más preciso que otro si la varianza del primero es menor que la del segundo.
  • Consistencia: Se refiere a la precisión de los estimadores. Un estimador preciso también es insesgado.
  • Espacio Muestral: Es el conjunto de todos los resultados posibles de un proceso experimental u observacional.
  • Valor P: Es la probabilidad exacta de cometer error tipo I.

Ejemplos Prácticos

2. Lechones 7 y 9 kg

Se analiza el peso de lechones:

  • X (media): 6,7 kg
  • DE (Desviación Estándar): 0,5 kg

Cálculo de Z:

Z = (X -... Continuar leyendo "Análisis Estadístico: Ejemplos Prácticos y Aplicaciones" »