Chuletas y apuntes de Matemáticas de Secundaria

Ordenar por
Materia
Nivel

1

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 7,18 KB

Principales dominios de España: Iberia húmeda: -La iberia húmeda es la parte Norte y Noreste de España. Hay más de 800mm de precipitación, hay bosque politípico caducifolio que son el roble que es un árbol que está en diversas variedades, el bosque de esta zona se llama bosque politípico caduciforme o caducifolio. El roble carvayo (cuerpus robur) tiene una hoja lobulada, su fruto es la bellota, tiene una especie de deformación, unas bolas con piquitos agallas que se producen por la picadura de un insecto. Hay más tipos de árboles como el haya (favus silvática) que se encuentra en suelos calcáreos, tiene su origen en el centro y este de Europa, tronco liso y recto, hoja caduca y ovalada, puede llegar a los 300 años. Cubrió... Continuar leyendo "1" »

Regresión Lineal Inferencial: Modelo, Supuestos e Inferencia

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 4,51 KB

Regresión Inferencial

Se denomina regresión inferencial porque las variables involucradas suelen ser continuas y el análisis cubre tanto la estimación por intervalo como los tests de hipótesis.

Método y Justificación

El modelo de regresión inferencial plantea explicar una variable dependiente Y en función de una variable independiente X mediante la forma:

Y = f(x) + E

Donde E representa los errores aleatorios y f(x) puede ser cualquier función. Nos centraremos en las funciones lineales:

f(x) = b₀ + b₁x

El objetivo es estimar este modelo a partir de una muestra (tanto de forma puntual como por intervalo) y analizar su significatividad. Esto se realiza típicamente con software estadístico como SPSS, bajo ciertas condiciones sobre los

... Continuar leyendo "Regresión Lineal Inferencial: Modelo, Supuestos e Inferencia" »

Estadística Descriptiva: Conceptos Básicos y Aplicaciones en Emprendimiento

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 5,16 KB

Introducción a la Estadística Descriptiva

En la unidad anterior de Investigación de Mercados se analizaron las diferentes formas de obtener información del mercado. En función de estos aspectos, el emprendedor recopila información fundamental que lo oriente en su futuro emprendimiento. En esta unidad se estudiará cómo esa información puede ser analizada y evaluada mediante la Estadística Aplicada al mercadeo y ventas.

Tipos de Gráficos Estadísticos

  • Gráfico en columnas
  • Gráfico en líneas
  • Gráfico circular (en pastel)
  • Gráfico por área

Proceso de Análisis Estadístico

Tabulación de Datos

Significa codificar y transcribir los datos a una herramienta de comprensión y análisis. Usualmente, los datos se transcriben a una hoja electrónica... Continuar leyendo "Estadística Descriptiva: Conceptos Básicos y Aplicaciones en Emprendimiento" »

Porque no es suficiente la estimación puntual y porque se tiene que recurrir a la estimación por intervalo

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 5,63 KB

Inferencia:

Objetivo

Planteamiento: es un problema de inferencia, porque se trata de decidir si una afirmación que se hace es cierta o no a partir de un muestreo aleatorio. En concreto (puede ser test de hipótesis,estimación por intervalo o estimación puntual)
.Es un problema de inferencia porque se trata de estimar un valor desconocido a partir de un muestreo aleatorio.

Experimento Población Variable Parámetro Muestra aleatoria Datos

 Método contraste de hipótesis:

Paso 1: Hipótesis que se plantean

Afirmación

Contrario

Como p representa la proporción ( lo que nos preguntan)la primera hipótesis es p>..Y la segunda p<>

H0 (siempre va con la igualdad)

H1

 El procedimiento estadístico de test de hipótesis se basa en “la presunción... Continuar leyendo "Porque no es suficiente la estimación puntual y porque se tiene que recurrir a la estimación por intervalo" »

Propietats de les igualtats

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en catalán con un tamaño de 1,71 KB

fras igualtat: a 1a igualtat (ja sigui numèrica o algèbrica) smpr li podrm frl q volguem, smpr q fm la matixa opracio als 2 mmbrs d la igualtat, ja q, d'aqsta manra, tots ls igualtats aixi construïds consrvaràn la sva crtsa o la sva falsdat. ls excpcions sn multiplicar pr 0 olvar a 1 exponnt pary, ja q aqsts opracions podn trncar la sva crtsao la sva falsdat.

fras transposicio d quantitats: 1a quantitat q stigui fnt 1a opracio concrta a tot 1 mmbr, podrm passar-la a l'altr mmbr, fnt (a tot l'altr mmbr) l'opracio contrària.

equacio d 1r grau amb 1 incògnita: s 1a igualtat algèbrica q no s complix pr a qualsvol valor numèric d la incògnita, q a ms a d'starlvada a grau 1



fras igualtat: a 1a igualtat (ja sigui numèrica o algèbrica) smpr... Continuar leyendo "Propietats de les igualtats" »

Símbolos matemáticos: Significado y uso

Enviado por cesar y clasificado en Matemáticas

Escrito el en español con un tamaño de 1,36 KB

En matemáticas, se utilizan diversos símbolos para representar conceptos, operaciones y relaciones. A continuación, se presenta una lista de los símbolos más comunes, junto con su significado:

Operadores y relaciones

  • Ángulo: ∢
  • Ángulo recto: ∡
  • Aproximadamente igual: ≐, ≈
  • Congruente con: ≌
  • Distinto, no igual: ≠
  • Equivalencia: ↔
  • Igual: =
  • Implicación: ⇒
  • Mayor que: >
  • Mayor o igual que: ≥
  • Menor que: <
  • Menor o igual que: ≤
  • Más: +
  • Más o menos: ±
  • Menos: -
  • Muy grande respecto a: >>
  • Muy pequeño respecto a: <<
  • No: ┒
  • Paralela: ∥
  • Por tanto, por consiguiente: ∴
  • Raya de fracción: /, 
  • Se corresponde con: ≙

Conjuntos

  • Conjunto de los números enteros: Z
  • Conjunto de los números naturales: N
  • Conjunto de los números racionales:
... Continuar leyendo "Símbolos matemáticos: Significado y uso" »

Definiciones Clave sobre Funciones y sus Propiedades

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 4,2 KB

Conceptos Clave sobre Funciones Matemáticas

Función

Es una relación que asocia a cada valor de la variable independiente un único valor de la variable dependiente. Una función puede representarse mediante una tabla, una gráfica, una fórmula o un diagrama de Venn.

Conjunto Dominio

El dominio está formado por todos los valores de la variable independiente para los cuales existe un valor de la variable dependiente.

Conjunto Imagen

Es la parte del codominio que representa todos los valores de "y" o de la variable dependiente que son alcanzados por la función.

Pre-imagen

Es cada elemento del conjunto dominio.

C+ (Conjunto de Positividad)

Es el conjunto de valores del dominio para los cuales las imágenes son positivas (f(x) > 0).

C- (Conjunto de

... Continuar leyendo "Definiciones Clave sobre Funciones y sus Propiedades" »

Clasificación de Roscas y Tornillos: Sistemas, Perfiles y Dimensiones

Enviado por Chuletator online y clasificado en Matemáticas

Escrito el en español con un tamaño de 4,61 KB

Tornillo Whitworth (S.W.)

Los tornillos Whitworth (S.W.) tienen por unidad de medida la pulgada. Sus filetes están formados por un prisma triangular, cuya sección recta es un triángulo isósceles. En este, el ángulo opuesto a la base es de 55º, redondeado 1/6 de su altura. Los ángulos adyacentes a la base también están redondeados en la misma cantidad, de manera que la altura real del filete será 2/3 de la altura del triángulo.

  • A = 0.64 * pmm
  • 2A = 1.28 * pmm
  • DN = Dext - 2A

Tuerca Whitworth

  • Dag = Dext - 0.80 * 2A
  • Dref = Dext + 0.08 * 2A

Tornillo del Sistema Sellers (S.S.)

Los tornillos del Sistema Sellers (S.S.) se miden en pulgada inglesa. El filete tiene por sección un triángulo equilátero. El ángulo en el vértice es de 60 grados y está

... Continuar leyendo "Clasificación de Roscas y Tornillos: Sistemas, Perfiles y Dimensiones" »

Fundamentos de las Funciones Matemáticas: Definición, Representación y Propiedades Clave

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 4,15 KB

Definición de Función

Una función es una relación entre dos variables. La primera la llamamos variable independiente y la solemos denotar con la letra x. La segunda la llamamos variable dependiente y la denotamos con la letra y. Además, por cada valor de x le corresponde como máximo un único valor de y.

Formas de Expresar una Función

Existen tres maneras principales de expresar o representar una función:

  1. Forma de tabla: Consiste en poner los valores de x en una columna de una tabla y los de y en otra.
  2. Forma gráfica: Consiste en representar la función en los ejes cartesianos (el eje horizontal es el de las abscisas y el eje vertical es el de las ordenadas). Una gráfica es función si cualquier recta vertical no la corta en más de un
... Continuar leyendo "Fundamentos de las Funciones Matemáticas: Definición, Representación y Propiedades Clave" »

Conceptos Fundamentales de Polinomios y Funciones Trascendentales

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 4,04 KB


Un polinomio de grado n tiene hasta n raíces reales. Las raíces reales siempre vienen d a 2. Si un polinomio es de grado impar tiene por lo menos 1 raíz real.

Gauss:

cdo una fracción irreducible p/q es raíz de un polinomio cn coeficientes enteros, P divide al coeficiente independiente y Q al principal. Un polinomio no nulo es primo cdo no puede expresarse como producto d grado positivo menor, si el polinomio no es primo es compuesto.

Función exponencial

K . A (a la X). K(coeficiente, R no nulo); A(base, R+ distinto d 1) .

Dom

Si k es – el dom es R- si k es + dom R+.

Imag

R+.

Asíntota

Y= 0.

Ceros

No tiene.

Función logarítmica

B(base, R+ distinto d 1); A(argumento, R+).

Dom

R+.

Imag

R.

Asíntota

X=0.

Ceros

No tiene. Desplazamiento: log (x-a).... Continuar leyendo "Conceptos Fundamentales de Polinomios y Funciones Trascendentales" »