Energía y síntesis química

Enviado por Programa Chuletas y clasificado en Química

Escrito el en español con un tamaño de 8,91 KB

Como ejemplos de reacciones redox en las que interviene el oxígeno pueden citarse la oxidación de los metales como el hierro (el metal se oxida por la acción del oxígeno de la atmósfera), la combustión y las reacciones metabólicas que se dan en la respiración. Un caso de reacción redox en la que no interviene el oxígeno atmosférico es la reacción que produce la electricidad en las baterías de plomo: Pb + PbO2 + 4H+ + 2SO42- ? 2PbSO4 + 2H2O.
La unión de dos grupos también se llama adición, y su separación, descomposición. Una adición múltiple de moléculas idénticas se conoce como polimerización (véase Polímero).

6. ENERGÉTICA QUÍMICA

La energía se conserva durante las reacciones químicas. En una reacción pueden considerarse dos fases diferenciadas: en primer lugar, los enlaces químicos de los reactivos se rompen, y luego se reordenan constituyendo nuevos enlaces. En esta operación se requiere cierta cantidad de energía, que será liberada si el enlace roto vuelve a formarse. Los enlaces químicos con alta energía se conocen como enlaces fuertes, pues precisan un esfuerzo mayor para romperse. Si en el producto se forman enlaces más fuertes que los que se rompen en el reactivo, se libera energía en forma de calor, constituyendo una reacción exotérmica. En caso contrario, la energía es absorbida y se produce una reacción endotérmica. Debido a que los enlaces fuertes se crean con más facilidad que los débiles, son más frecuentes las reacciones exotérmicas espontáneas; un ejemplo de ello es la combustión de los compuestos del carbono en el aire para producir CO2 y H2O, que tienen enlaces fuertes. Pero también se producen reacciones endotérmicas espontáneas, como la disolución de sal en agua.

Las reacciones endotérmicas suelen estar asociadas a la disociación de las moléculas. Esto último puede medirse por el incremento de la entropía del sistema. El efecto neto de la tendencia a formar enlaces fuertes y la tendencia de las moléculas e iones a disociarse se puede medir por el cambio en la energía libre del sistema. Todo cambio espontáneo a temperatura y presión constantes implica un incremento de la energía libre, acompañado de un aumento de la fuerza del enlace. Véase Química física; Termodinámica.

7. SÍNTESIS QUÍMICA

La síntesis química consiste en obtener compuestos químicos a partir de sustancias más simples. Los objetivos principales de la síntesis química son la creación de nuevas sustancias químicas, así como el desarrollo de métodos más baratos y eficaces para sintetizar sustancias ya conocidas. Normalmente, basta con la purificación de sustancias naturales para obtener un producto químico o aprovechar el uso de ese producto como materia prima para otras síntesis. La industria farmacéutica, por ejemplo, depende con frecuencia de complejos compuestos químicos, que se encuentran en el petróleo crudo, para la síntesis de medicinas. En algunas ocasiones, cuando se trata de sustancias escasas o muy costosas, se hace preciso sintetizar dicha sustancia a partir de otras materias primas más abundantes y más baratas.

Uno de los principales objetivos de la síntesis química es producir cantidades adicionales de sustancias que ya se dan en la naturaleza. Ejemplos de ello son la recuperación del cobre de sus menas y la síntesis de ciertas medicinas que se encuentran de modo natural (como la aspirina) y de vitaminas (como el ácido ascórbico o vitamina C). Otro de sus objetivos es la síntesis de materiales que no se dan de modo natural, como el acero, los plásticos y los adhesivos.

Alrededor de once millones de compuestos químicos han sido catalogados por el Chemical Abstracts Service de Columbus, Ohio (Estados Unidos). Se calcula que cada día se sintetizan unos 2.000 nuevos compuestos. Se producen unos 6.000 con fines comerciales y unos 300 más se incorporan al mercado cada año. Antes de su comercialización, todo nuevo compuesto se comprueba, no sólo con fines comerciales, sino también para descubrir posibles efectos dañinos en el ser humano y el medio ambiente. El proceso para determinar la toxicidad de un compuesto es difícil y costoso, debido a la gran variedad de niveles de dosis tóxicas para el hombre, las plantas y los animales, y por lo complicado que resulta medir los efectos de una exposición a largo plazo.

La síntesis química no se desarrolló como ciencia rigurosa y sofisticada hasta bien entrado el siglo XX. Antaño, la síntesis de una sustancia ocurría algunas veces por accidente, y la utilización de esos materiales nuevos era muy limitada. Las teorías que predominaban hasta este siglo contribuyeron a limitar la capacidad de los químicos para desarrollar una aproximación sistemática a la síntesis. Hoy, en cambio, es posible diseñar nuevas sustancias químicas para cubrir necesidades específicas (medicinas, materiales estructurales, combustibles), sintetizar en el laboratorio casi todas las sustancias que se encuentran en la naturaleza, inventar y fabricar nuevos compuestos e incluso predecir, con la ayuda de sofisticados ordenadores o computadoras, las propiedades de una molécula objetivo y sus efectos a largo plazo en medicina y en el medio ambiente.

Gran parte de los progresos conseguidos en el campo de la síntesis se debe a la capacidad de los científicos para determinar la estructura detallada de una serie de sustancias, comprendiendo la correlación entre la estructura de una molécula y sus propiedades (relaciones estructura-actividad). De hecho, antes de su síntesis, se puede diseñar la estructura y propiedades de una serie de moléculas, lo que proporciona a los científicos una mejor comprensión del tipo de sustancias más necesarias para un fin concreto. Las modernas medicinas de penicilina son modificaciones sintéticas de la sustancia que descubrió en la naturaleza el bacteriólogo británico Alexander Fleming. Se han descubierto más de mil enfermedades en el ser humano causadas por deficiencias moleculares, muchas de las cuales pueden tratarse con medicinas sintéticas. Gran parte de la investigación sobre nuevos combustibles y de métodos de utilización de la energía solar se basan en el estudio de las propiedades moleculares de productos sintéticos. Uno de los logros más recientes en este campo es la fabricación de superconductores basados en la estructura de complicados materiales inorgánicos cerámicos, como el YBa2Cu3O7 y otros de estructura similar.

Hoy es posible sintetizar hormonas, enzimas y material genético idéntico al de los sistemas vivos, aumentando la posibilidad de tratar las causas que originan enfermedades humanas a través de la ingeniería genética. Esto ha sido posible en los últimos años gracias a los diseños que se obtienen con la ayuda de modernos y potentes ordenadores.

Otro de los grandes logros recientes ha sido la utilización habitual de sistemas vivos simples, como levaduras, bacterias y hongos, para producir importantes sustancias. También es usual la síntesis bioquímica de materiales biológicos. La bacteria Escherichia coli se utiliza para obtener insulina humana, las levaduras para producir alcohol y los hongos para obtener penicilina.


Más fuentes
Bibliografía

Reacción química

Bruah, M. Termodinámica química elemental. Barcelona: Editorial Reverté, 1978. Texto especializado sobre la transferencia de energía en las reacciones químicas.
Laidler, J. Keith. Cinética de reacciones. Madrid: Editorial Alhambra, 1976. Libro monográfico y especializado que requiere conocimientos previos de química.
Morcillo, J. Temas básicos de química. Madrid: Editorial Alhambra, 1981. Libro de química general en el se tratan, entre otros temas, las características de las reacciones químicas.
Walas, S. M. Cinética de reacciones químicas. Madrid: Aguilar de Ediciones, 1975. Libro especializado que requiere conocimientos previos de química física.
Lecturas adicionales

Reacciones químicas controladas por láser
En el artículo Reacciones químicas controladas por láser se describen distintos métodos para tratar de controlar las reacciones químicas utilizando el láser, así como las limitaciones que presentan. Estos métodos están basados en uno de los aspectos esenciales de la mecánica cuántica: las propiedades ondulatorias de la luz y la materia. En el siguiente fragmento se recoge una de las técnicas más sencillas que puede ayudar a controlar las reacciones químicas, partiendo del fenómeno de interferencia de las ondas.

Entradas relacionadas: