Aplicaciones de un tiristor

Enviado por Programa Chuletas y clasificado en Electricidad y Electrónica

Escrito el en español con un tamaño de 33,18 KB

TIRISTOR  GTO:



es un dispositivo de electrónica de potencia que puede ser encendido por un solo pulso de corriente positiva en la terminal puerta o gate (G), al igual que el tiristor normal; pero en cambio puede ser apagado al aplicar un pulso de corriente negativa en el mismo terminal. Ambos estados, tanto el estado de encendido como el estado de apagado, son controlados por la corriente en la puerta (G)
Resultado de imagen para simbologiagto

Características:



El disparo se realiza mediante una VGK >0
El bloqueo se realiza con una VGK
La ventaja del bloqueo por puerta es que no se precisan de los circuitos de bloqueo forzado que requieren los SCR.
La desventaja es que la corriente de puerta tiene que ser mucho mayor por lo que el generador debe estar mas dimensionado.
El GTO con respecto al SCR disipa menos potencia.

FUNCIONAMIENTO

Un tiristor GTO, al igual que un SCR puede activarse mediante la aplicación de una señal positiva de compuerta. Sin embargo, se puede desactivar mediante una señal negativa de compuerta. Un GTO es un dispositivo de enganche y se construir con especificaciones de corriente y voltajes similares a las de un SCR. Un GTO se activa aplicando a su compuerta un pulso positivo corto y se desactiva mediante un pulso negativo corto. 

INTENSIDAD DE PUERTA EN EL ENCENDIDO DE UN GTO


ENCENDIDO DE UN  GTO

Al igual que ocurre con un tiristor convencional, para llevar a cabo el encendido de un GTO es necesario aplicar una determinada corriente entrante por la puerta. Sin embargo, en el encendido de un GTO la corriente máxima por la puerta IGM y la velocidad de variación de dicha corriente al principio de la conducción deben ser lo suficientemente grandes como para asegurar que la corriente circula por todas las islas cátodo (figura 6.4. Si esto no fuese así y sólo algunas islas cátodo condujeran, la densidad de corriente en estas islas sería tan elevada que el excesivo calentamiento en zonas localizadas podría provocar la destrucción del dispositivo.

APAGADO


Al comenzar a circular corriente positiva por la puerta, la corriente de ánodo a cátodo se concentra en las zonas situadas entre los terminales de puerta, aumentando la densidad de corriente en estas zonas.

De esta forma, el GTO no comienza a apagarse hasta que la corriente de ánodo a cátodo ha quedado reducida a pequeños filamentos entre los terminales de puerta. Entonces la tensión vAK, hasta entonces muy pequeña al estar el GTO en funcionamiento, comienza a aumentar. Como la gran densidad de corriente que circula por estos pequeños filamentos podría ocasionar su destrucción, se utiliza un condensador snubber en paralelo con el GTO, que ofrece a la corriente un camino alternativo por donde circular. Así, cuando vAK comienza a aumentar el condensador comienza a cargarse, por lo que parte de la corriente que circulaba por el GTO lo hace ahora por el condensador.

Un tiristor gto requiere una mayor corriente de cimpuerta para encendido que un scr común para apagarlos se necesita una gran pulsación de corriente negativa de entre 20 y 30 m s de duración

CURVA CarácterÍSTICA DEL GTO


La razón (IA/IGR) de la corriente de ánodo IA a la máxima corriente negativa en la puerta (IGR) requerida para el voltaje es baja, comúnmente entre 3 y 5. Por ejemplo, para un voltaje de 2500 V y una corriente de 1000 A, un GTO normalmente requiere una corriente negativa de pico en la puerta de 250 A para el apagado

Rectificadores controlados de silicio activados por luz (LASCR)

Este dispositivo se activa mediante radiación directa sobre el disco de silicio provocada con luz. Los pares electrón-hueco que se crean debido a la radiación producen la corriente de disparo bajo la influencia de un campo eléctrico. La estructura de compuerta se diseña a fin de proporcionar la suficiente sensibilidad para el disparo, a partir de fuentes luminosas prácticas (por ejemplo, LED y para cumplir con altas capacidades de di/dt y dv/dt).

Los LASRC se utilizan en aplicaciones de alto voltaje y corriente [por ejemplo, transmisión de cd de alto voltaje (HVDC) y compensación de potencia reactiva estática o de volt-amperes reactivos (VAR)]. Un LASCR ofrece total aislamiento eléctrico entre la fuente de disparo luminoso y el dispositivo de conmutación de un convertidor de potencia, que flota a un potencial tan alto como unos cuantos cientos de kilovoltios. La especificación de voltaje de un LASCR puede llegar tan alto como 4 kv a 1500 A, con una potencia de disparo luminoso de menos de 100mw. El di/dt típico es 250 A/m s y el dv/dt puede ser tan alto como 2000v/m s.


Aplicaciones

Los LASRC se utilizan en aplicaciones de alto voltaje y corriente por ejemplo, transmisión de cd de alto voltaje (HVDC) y compensación de potencia reactiva estática o de volt-amperes reactivos (VAR). Un LASCR ofrece total aislamiento eléctrico entre la fuente de disparo luminoso y el dispositivo de conmutación de un convertidor de potencia, que flota a un potencial tan alto como unos cuantos cientos de kilovoltios.

Equipos en que se usa

  • Alarmas antirrobo
  • Detectores de presencia en puertas y ascensores
  • Circuitos de control óptico en general
  • Relevadores
  • Control de fase
  • Control de motores
  • Y una variedad de aplicaciones en computadoras.

Carácterísticas

La especificación de voltaje de un LASCR puede llegar tan alto como 4 kv a 1500 A, con una potencia de disparo luminoso de menos de 100mw. El di/dt típico es 250 A/ms y el dv/dt puede ser tan alto como 2000v/ms. La frecuencia de conmutación es de hasta 2kHz, estos tiristores normalmente disponen de conexiones especiales para ser disparados con fibra óptica. Un LASCR ofrece total aislamiento eléctrico entre la fuente de disparo luminoso y el dispositivo de conmutación de un convertidor de potencia, que flota a un potencial tan alto como unos cuantos cientos de kilovoltios.


Entradas relacionadas: