Orígenes y Metodología de la Investigación de Operaciones: Optimización en la Toma de Decisiones

Enviado por Programa Chuletas y clasificado en Magisterio

Escrito el en español con un tamaño de 8,72 KB

Historia de la Investigación de Operaciones

La primera actividad de Investigación de Operaciones se dio durante la Segunda Guerra Mundial en Gran Bretaña, donde la Administración Militar llamó a un grupo de científicos de distintas áreas del saber para que estudiaran los problemas tácticos y estratégicos asociados a la defensa del país.

El nombre de Investigación de Operaciones fue dado aparentemente porque el equipo estaba llevando a cabo la actividad de investigar operaciones (militares).

Motivados por los resultados alentadores obtenidos por los equipos británicos, los administradores militares de Estados Unidos comenzaron a realizar investigaciones similares. Para eso reunieron a un grupo selecto de especialistas, los cuales empezaron a tener buenos resultados y en sus estudios incluyeron problemas logísticos complejos, la planeación de minas en el mar y la utilización efectiva del equipo electrónico.

Al término de la guerra y atraídos por los buenos resultados obtenidos por los estrategas militares, los administradores industriales empezaron a aplicar las herramientas de la Investigación de Operaciones a la resolución de sus problemas que empezaron a originarse debido al crecimiento del tamaño y la complejidad de las industrias.

Aunque se ha acreditado a Gran Bretaña la iniciación de la Investigación de Operaciones como una nueva disciplina, los Estados Unidos tomaron pronto el liderazgo en este campo rápidamente creciente. La primera técnica matemática ampliamente aceptada en el medio de Investigación de Operaciones fue el Método Símplex de Programación Lineal, desarrollado en 1947 por el matemático norteamericano George B. Dantzig. Desde entonces las nuevas técnicas se han desarrollado gracias al esfuerzo y cooperación de las personas interesadas tanto en el área académica como en el área industrial.

Un segundo factor en el progreso impresionante de la Investigación de Operaciones fue el desarrollo de la computadora digital, que con sus tremendas capacidades de velocidad de cómputo y de almacenamiento y recuperación de información, permitieron al tomador de decisiones rapidez y precisión.

Si no hubiera sido por la computadora digital, la Investigación de Operaciones con sus grandes problemas de computación no hubiera crecido al nivel de hoy en día.

Actualmente la Investigación de Operaciones se está aplicando en muchas actividades. Estas actividades han ido más allá de las aplicaciones militares e industriales, para incluir hospitales, instituciones financieras, bibliotecas, planeación urbana, sistemas de transporte y sistemas de comercialización.

Definición de Investigación de Operaciones

La Investigación de Operaciones o Investigación Operativa se puede definir de la siguiente manera: “La Investigación de Operaciones es la aplicación por grupos interdisciplinarios del método científico a problemas relacionados con el control de las organizaciones o sistemas a fin de que se produzcan soluciones que mejor sirvan a los objetivos de toda la organización”.

La Investigación de Operaciones o Investigación Operativa es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística y algoritmos con objeto de realizar un proceso de toma de decisiones. Frecuentemente, trata del estudio de complejos sistemas reales, con la finalidad de mejorar (u optimizar) su funcionamiento. La investigación de operaciones permite el análisis de la toma de decisiones teniendo en cuenta la escasez de recursos, para determinar cómo se puede optimizar un objetivo definido, como la maximización de los beneficios o la minimización de costes.

Características de la Investigación de Operaciones

  • La Investigación de Operaciones usa el método científico para investigar el problema en cuestión. En particular, el proceso comienza por la observación cuidadosa y la formulación del problema incluyendo la recolección de datos pertinentes.
  • La Investigación de Operaciones adopta un punto de vista organizacional. De esta manera intenta resolver los conflictos de interés entre los componentes de la organización de forma que el resultado sea el mejor para la organización completa.
  • La Investigación de Operaciones intenta encontrar una mejor solución (llamada solución óptima) para el problema bajo consideración. En lugar de contentarse con mejorar el estado de las cosas, la meta es identificar el mejor curso de acción posible.
  • En la Investigación de Operaciones es necesario emplear el enfoque de equipo. Este equipo debe incluir personal con antecedentes firmes en matemáticas, estadísticas y teoría de probabilidades, economía, administración de empresas, ciencias de la computación, ingeniería, etc. El equipo también necesita tener la experiencia y las habilidades para permitir la consideración adecuada de todas las ramificaciones del problema.
  • La Investigación de Operaciones ha desarrollado una serie de técnicas y modelos muy útiles a la Ingeniería de Sistemas. Entre ellos tenemos: la Programación No Lineal, Teoría de Colas, Programación Entera, Programación Dinámica, entre otras.
  • La Investigación de Operaciones tiende a representar el problema cuantitativamente para poder analizarlo y evaluar un criterio común.

Otras características

  • Representar el sistema o problema a resolver a través de soluciones matemáticas.
  • Usar el método científico para la toma de decisiones.
  • Encontrar la mejor solución (solución óptima).

Metodología de la Investigación de Operaciones

El proceso de la Investigación de Operaciones comprende las siguientes fases:

  1. Formulación y definición del problema.
  2. Construcción del modelo.
  3. Solución del modelo.
  4. Validación del modelo.
  5. Implementación de resultados.

Explicación de cada una de las fases:

  1. Formulación y definición del problema: En esta fase del proceso se necesita una descripción de los objetivos del sistema, es decir, qué se desea optimizar; identificar las variables implicadas, ya sean controlables o no; determinar las restricciones del sistema. También hay que tener en cuenta las alternativas posibles de decisión y las restricciones para producir una solución adecuada.
  2. Construcción del modelo: En esta fase, el investigador de operaciones debe decidir el modelo a utilizar para representar el sistema. Debe ser un modelo tal que relacione a las variables de decisión con los parámetros y restricciones del sistema. Los parámetros (o cantidades conocidas) se pueden obtener ya sea a partir de datos pasados o ser estimados por medio de algún método estadístico. Es recomendable determinar si el modelo es probabilístico o determinístico. El modelo puede ser matemático, de simulación o heurístico, dependiendo de la complejidad de los cálculos matemáticos que se requieran.
  3. Solución del modelo: Una vez que se tiene el modelo, se procede a derivar una solución matemática empleando las diversas técnicas y métodos matemáticos para resolver problemas y ecuaciones. Debemos tener en cuenta que las soluciones que se obtienen en este punto del proceso son matemáticas y debemos interpretarlas en el mundo real. Además, para la solución del modelo, se deben realizar análisis de sensibilidad, es decir, ver cómo se comporta el modelo a cambios en las especificaciones y parámetros del sistema. Esto se hace debido a que los parámetros no necesariamente son precisos y las restricciones pueden estar equivocadas.
  4. Validación del modelo: La validación de un modelo requiere que se determine si dicho modelo puede predecir con certeza el comportamiento del sistema. Un método común para probar la validez del modelo es someterlo a datos pasados disponibles del sistema actual y observar si reproduce las situaciones pasadas del sistema. Pero como no hay seguridad de que el comportamiento futuro del sistema continúe replicando el comportamiento pasado, entonces siempre debemos estar atentos de cambios posibles del sistema con el tiempo, para poder ajustar adecuadamente el modelo.
  5. Implementación de resultados: Una vez que hayamos obtenido la solución o soluciones del modelo, el siguiente y último paso del proceso es interpretar esos resultados y dar conclusiones y cursos de acción para la optimización del sistema. Si el modelo utilizado puede servir a otro problema, es necesario revisar, documentar y actualizar el modelo para sus nuevas aplicaciones.

Entradas relacionadas: