Mapa de inputs de una célula oponente doble rojo-verde de V1 y ajuste analítico del CR de células magno y parvo
Enviado por Chuletator online y clasificado en Plástica y Educación Artística
Escrito el en español con un tamaño de 5,49 KB
Dibuja el mapa de inputs de una célula oponente doble rojo-verde de V1
Explica por qué esta célula tiene antagonismo espacial tanto para variaciones de luminancia como para variaciones de color, y qué es lo que se debe hacer, partiendo de un fondo de luz amarilla, para que la respuesta de la célula sea máxima.
Una célula oponente doble rojo-verde de V1 tiene antagonismo espacial y espectral tanto en el centro como en la periferia.
Para variaciones de luminancia: por ejemplo, con un incremento de luminancia, en el centro se produce una señal incremental de L con sinapsis + que da respuesta excitatoria y una sinapsis incremental de M – que da respuesta inhibitoria. Por lo tanto, el centro no responde. En la periferia ocurre de forma análoga con la diferencia del signo +/- global, por lo que tampoco responde.
Para variaciones puras de color: en el centro se produce una señal incremental de L con sinapsis + que da respuesta excitatoria y una sinapsis incremental de M – que da respuesta inhibitoria, produciéndose de manera global respuesta excitatoria. En la periferia se produce una señal incremental de M – con respuesta inhibitoria y señal decremental de L con sinapsis +, lo que da una respuesta periférica global inhibitoria. Por lo tanto, hay antagonismo espacial para variaciones de color al iluminar todo el CR.
Respuesta máxima: Debemos generar un contraste espacial cromático, es decir, que el color de la luz cambie hacia rojo en el centro y verde en la periferia, por lo que se producirá una respuesta máxima excitatoria tanto en el centro como en la periferia.
Explica cómo se ajusta analíticamente el CR (sensibilidad espacial) de una célula magno y de una célula parvo, indicando claramente el significado de cada uno de los parámetros del modelo
Los CR de las células ganglionares tienen simetría circular, para cualquier punto de luz encendido a una misma distancia del centro, produce igual respuesta. La f(x) que describe cómo cambia la respuesta con la distancia al centro (o con las coordenadas x e y del estímulo si el CR no tuviera simetría circular) se denomina sensibilidad espacial. La forma típica de la sensibilidad espacial de dos mecanismos centro-periferia es: (fórmula1) donde AC, AP y C, P son las amplitudes y las desviaciones estándar, respectivamente, de los 2 mecanismos. La sensibilidad espacial de la célula es la suma de las sensibilidades de tales mecanismos. Si un mecanismo, por ejemplo, el centro, actúa de manera excitatoria y el otro, la periferia, de manera inhibitoria, la suma, signo incluido, será la diferencia entre las gaussianas.
CR = (fórmula2) El mecanismo al que denominamos periferia responde desde su propio centro, que se encuentra en la misma posición que el del mecanismo al que denominamos centro. Esta respuesta espacial de una célula es lo que se conoce como modelo de Rodiek. Hay que ajustar: AC, AP y C, P
Explica cómo se calcula la imagen percibida, Im(x, y), de un objeto cuya distribución de intensidades es Obj(x, y), haciendo uso del canal único en el dominio frecuencial. Como aplicación, explica la percepción que se experimenta cuando se mira un estímulo cuyo perfil de luminancia es una función escalera (bandas de Mach).
Para calcular la “imagen perceptual”, haciendo uso del modelo de canal único en el dominio frecuencial, deberíamos proceder de la siguiente manera: (fórmula3) Donde Obj(x, y) representa a la escena que estamos mirando e Im(x, y) representa a la imagen perceptual.
El primer paso requiere una Transformada de Fourier y el último paso requeriría una TF-1. La diferencia entre las distribuciones de intensidad Obj(x, y) e Im(x, y) es el efecto de la CSF (el efecto del filtraje).
Un filtro pasa-baja produce un “realzado de los bordes”, que se puede apreciar cuando nos fijamos en las bandas de Mach. En ellas se produce una inhibición lateral en la visión. Son un conjunto de bandas grises ordenadas de forma que cada una tiene más luminancia que la anterior. Percibimos un realce luminoso del borde cercano hacia los oscuros y oscurecimiento hacia los claros.
Haciendo uso del principio de univariancia, deduce qué relación hay entre los valores triestímulo RGB de un estímulo C cualquiera, y las excitaciones LMS que dicho estímulo produce en los conos
De acuerdo con el Principio de Univariancia (“la respuesta de un fotorreceptor depende sólo del número de fotones absorbidos”), las condiciones de igualación para el color C son: (fórmula 4) Nλ es el número de fotones del primario λi necesario para igualar el estímulo C. De forma matricial: (fórmula5) Donde (R), (G) y (B) son los primarios del espacio CIE-RGB y NL(C), NM(C) y NS(C) son valores triestímulo. En colorimetría, los primarios del espacio de excitación de conos son L, M y S y sus valores triestímulo son L(C), M(C) y S(C). Por lo tanto, la Ecuación del cambio de base de RGB a LMS es (fórmula6)