Fundamentos de las Ondas: Tipos, Propagación y Ecuación Armónica
Enviado por Programa Chuletas y clasificado en Física
Escrito el en
español con un tamaño de 3,54 KB
Ondas: conceptos, tipos y propiedades
Un movimiento ondulatorio es una forma de transmisión de energía, sin
transporte neto de materia, mediante la propagación de alguna forma de
perturbación. Esta perturbación se denomina onda.
-Ondas mecánicas: propagación de una perturbcion de tipo mecánico a
través de algún medio material elástico por el que se transmite la energía
mecánica de la onda.
-Ondas electromagnéticas: transmisión de energía electromagnética
mediante la propagación de dos campos oscilatorios, el eléctrico y el
magnético del espacio, y por eso se propagan también en el vacío.
Velocidad de propagación de una onda mecánica
La velocidad de propagación de una onda es la distancia la que se
transmite la onda dividida por el tiempo que emplea en ello.
La velocidad de una onda mecánica depende de las propiedades del
medio en el que se transmite.
Ondas armónicas: concepto y caracterisicas
Llamamos onda armónicas a las que tienen su origen en las perturbaciones
periódicas producidas por un medio elástico por un mov. Armónico simple.
-Amplitud de la onda, A: es el valor máximo de elongación y de las
partículas del medio en su oscilación. Su unidad en el SI es el metro.
-Período, T: es el tiempo que emplea el movimiento ondulatorio en avanzar
una longitud de onda, o bien el tiempo que emplea un punto cualquiera
afectado por la perturbación en efectuar una oscilación completa. Su
unidad en el SI son segundos.
-Longitud de onda: es la distancia mínima entre dos puntos consecutivos
que se hallan en el mismo estado de vibración. Unidad en el SI es el metro.
-Frecuencia, f: es el nº de ondas que pasan por un pto medio por unidad de
tiempo. También puede definirse como el numero de oscilaciones que
efectúa un punto medio por unidad de tiempo. Su unidad den el SI es el Hz
Función de onda. Ecuación y parámetros
La ecuación del movimiento ondulatorio armónico o función de onda
permite calcular para un tiempo dado, t, el valor de la elongación, y,
correspondiente a una partícula dada de abscisa, x; es decir, permite
conocer el estado de vibración de cada una de las partículas.
La función de onda, y, representa el valor de la elongación para cada
punto del medio en función del tiempo.
Doble periodicidad de la función de onda
-Respecto a la posición (x): para un tiempo fijo la elongación, y, es una
función sinusoidal dela posición, x, cuyo período es la longitud de onda .
Así las partículas separadas por un numero entero de longitudes de onda
( ), están en fase. Si se encuentran separadas por un nuemro
impar de medidas de longitudes de onda ( ), están en oposición de fase.
-Respecto al tiempo: Para una posición fija, la elongación, y, es una función
sinusoidal del tiempo, t, cuyo periodo es T. Así, los estados de vibración de una
partícula para tiempos que difieren un numero entero de periodos(
) están en fase. Si los tiempos difieren un numero impar de
semiperíodos ( ) están en oposición de fase.