Función Asimétrica de Valor: Impacto en Decisiones y Aversión a la Pérdida

Enviado por Programa Chuletas y clasificado en Economía

Escrito el en español con un tamaño de 4,46 KB

4. La función asimétrica de valor: Exposición e implicaciones.

Kahneman y Tversky iniciaron su teoría de la función asimétrica de valor realizando varios estudios, y una de sus conclusiones fue que los individuos conciben de distinta manera (en cuentas separadas) los beneficios y los gastos debido a que cada uno de ellos se encuentra en diferentes áreas del cerebro. Esta conclusión echaba por tierra la idea de fungibilidad que siempre había sido defendida por la Teoría Clásica, la cual decía que la contabilidad económica agrupaba los beneficios y las pérdidas en una sola cuenta. La función asimétrica de valor se caracteriza por:

  • No fungibilidad, ya que los beneficios y las pérdidas se analizan por separado.
  • Es mucho más inclinada en las pérdidas que en las ganancias.
  • Los individuos ponderan las pérdidas mucho más que las ganancias del mismo tamaño. Eso se conoce como aversión a la pérdida: el valor que le das a algo es más pequeño que su pérdida. Se le denomina efecto donación.

Parece que una importante clase de desviaciones de la elección racional se debe a la función asimétrica de valor. En contraste con el modelo de la elección racional, Kahneman y Tversky utilizan una función de valor definida con respecto a los cambios de la riqueza. A diferencia del modelo tradicional, en las decisiones concede a las pérdidas mucho más peso que a las ganancias. Esta característica hace que las decisiones sean sumamente sensibles a la formulación de las opciones (framing effects o efectos marco). Por ejemplo, un par de ganancias es más atractivo si se presentan por separado que si se presentan juntas. En cambio, las pérdidas causan menos impactos si se consideran juntas que si se consideran por separado. Por otra parte, una pérdida combinada con una ganancia algo mayor produce un efecto positivo, mientras que si se consideran por separado, su efecto neto es negativo; y por último, una pequeña ganancia separada de una gran pérdida produce un efecto negativo menor que las dos juntas. En cambio, según el modelo de la elección racional, no debe importar ninguno de estos dos efectos de formulación.

Las decisiones en condiciones de incertidumbre también suelen violar las prescripciones del modelo de la utilidad esperada. Y, de nuevo, la función asimétrica de valor describe de una manera coherente algunos patrones importantes. Los individuos tienden a ser renuentes al riesgo en la zona de las ganancias y a buscar el riesgo en la zona de las pérdidas. Como consecuencia, la existencia de una diferencia sutil en la formulación del problema puede alterar el punto de referencia mental utilizado para percibir las ganancias y las pérdidas, lo que puede producir, a su vez, patrones de elección radicalmente diferentes. A continuación se exponen varios ejemplos que ilustran esto último que acabamos de decir.

Ejemplos de la Función Asimétrica de Valor

Ejemplo 1

  • A → ganancia segura de 240 $ (84%)
  • B → probabilidad del 25% de ganar 1000$ y 75 % de ganar 0 (16%)

Ejemplo 2

  • C → pérdida segura de 750 $ (13%)
  • D → probabilidad del 75% de perder 1000$ y 25% de perder 0 (87%)

Ejemplo 3

  • E → probabilidad del 25% de ganar 240$ y 75% de perder 760$ (0%)
  • F → probabilidad del 25% de ganar 250$ y 75% de perder 750$ (100%).

Como se puede apreciar, la opción E es la combinación de A y D, mientras que F es la combinación de B y C. Si sumamos los resultados de los ejemplos 1 y 2, el resultado es que se prefiere E a F, y sin embargo, el ejemplo 3 ha salido que se prefiere F a E. Estos resultados son consistentes con la función asimétrica de valor. El ejemplo 1 recoge la aversión a la pérdida de los individuos. El ejemplo 2 es una pérdida segura contra la probabilidad mínima de una ganancia, que según la función asimétrica de valor, ésta predice que se busca el riesgo. Y el ejemplo 3, donde se combina ganancias con pérdida, se ve claramente como el lenguaje hace que domine la probabilidad mínima de las ganancias.

No hay que olvidar que la economía normativa, a la hora de tomar decisiones, no tiene en cuenta los costes hundidos (costes fijos o pérdidas de un bien o servicio), los cuales tienen mucho peso en la economía.

Entradas relacionadas: