Entendiendo la Primera Ley de la Termodinámica: Conservación de la Energía
Enviado por Programa Chuletas y clasificado en Tecnología Industrial
Escrito el en español con un tamaño de 3,41 KB
La Primera Ley de la Termodinámica: Un Vistazo Profundo
La primera ley de la termodinámica determina que la energía interna de un sistema aumenta cuando se le transfiere calor o se realiza un trabajo sobre él. Su expresión depende del criterio de signos para sistemas termodinámicos elegido. Al igual que todos los principios de la termodinámica, el primer principio se basa en sistemas en equilibrio.
Por otro lado, es probable que hayas oído más de una vez que la energía ni se crea ni se destruye, solo se transforma. Se trata del principio general de conservación de la energía. Pues bien, la primera ley de la termodinámica es la aplicación a procesos térmicos de este principio. En un sistema aislado, en el que no se intercambia energía con el exterior, nos queda:
∆U=0
El universo en su totalidad se podría considerar un sistema aislado, y por tanto, su energía total permanece constante.
Finalmente observa que, al ser una función de estado, la diferencia de energía interna solo depende de los estados inicial y final, ∆U = Uf - Ui, y no del camino que haya seguido el proceso. El calor y el trabajo, en cambio, no son funciones de estado, por lo que sus valores dependen del camino seguido por el proceso. Esto quedará bien ilustrado en los diagramas presión - volumen para gases ideales, como verás más abajo.
Trabajo Termodinámico: Definición y Concepto
La energía interna de un cuerpo no incluye la energía cinética global o potencial mecánica del mismo, tal y como señalamos anteriormente. Es por ello que no se ve alterada con el trabajo mecánico. En termodinámica nos interesa otro tipo de trabajo, capaz de variar la energía interna de los sistemas. Se trata del trabajo termodinámico.
Se denomina trabajo termodinámico a la transferencia de energía entre el sistema y el entorno por métodos que no dependen de la diferencia de temperaturas entre ambos. Es capaz de variar la energía interna del sistema.
Normalmente el trabajo termodinámico está asociado al movimiento de alguna parte del entorno, y resulta indiferente para su estudio si el sistema en sí está en movimiento o en reposo. Por ejemplo, cuando calientas un gas ideal en un recipiente con un pistón móvil en su parte superior, las partículas adquieren mayor energía cinética. Este aumento en la energía de las partículas se traduce en un aumento de la energía interna del sistema que, a su vez, puede traducirse en un desplazamiento del pistón. El estudio de este proceso desde el punto de vista de la termodinámica es independiente de si el sistema, como un todo, se encuentra en reposo o en movimiento, que sería una cuestión de mecánica. Sin embargo sí es cierto que, tal y como ocurre en una máquina de vapor, la energía de dicho trabajo termodinámico puede transformarse en energía mecánica.