Enrutamiento estático y dinámico: ventajas, desventajas y protocolos

Enviado por Programa Chuletas y clasificado en Informática y Telecomunicaciones

Escrito el en español con un tamaño de 9,36 KB

Enrutamiento estático

Las redes remotas se agregan a la tabla de enrutamiento mediante la configuración de rutas estáticas o la habilitación de un protocolo de enrutamiento dinámico. Cuando el IOS aprende sobre una red remota y la interfaz que usará para llegar a esa red, agrega la ruta a la tabla de enrutamiento siempre que la interfaz de salida esté habilitada. Una ruta estática incluye la dirección de red y la máscara de subred de la red remota, junto con la dirección IP del router del siguiente salto o la interfaz de salida. Las rutas estáticas se indican con el código S en la tabla de enrutamiento, como se muestra en la figura. Las rutas estáticas se examinan en detalle en el próximo capítulo.

Cuándo usar rutas estáticas

Las rutas estáticas deben usarse en los siguientes casos:

  • Una red está compuesta por unos pocos routers solamente.
  • Una red se conecta a Internet solamente a través de un único ISP.
  • Una red extensa está configurada con una topología hub-and-spoke.

Enrutamiento dinámico

Los routers usan protocolos de enrutamiento dinámico para compartir información sobre el estado y la posibilidad de conexión de redes remotas. Los protocolos de enrutamiento dinámico ejecutan varias actividades, entre ellas:

Función de los protocolos de enrutamiento dinámico

Qué son exactamente los protocolos de enrutamiento dinámico? Los protocolos de enrutamiento se usan para facilitar el intercambio de información de enrutamiento entre los routers. Estos protocolos permiten a los routers compartir información en forma dinámica sobre redes remotas y agregar esta información automáticamente en sus propias tablas de enrutamiento. Esto se muestra en la animación. Los protocolos de enrutamiento determinan la mejor ruta a cada red que luego se agrega a la tabla de enrutamiento. Uno de los principales beneficios de usar un protocolo de enrutamiento dinámico es que los routers intercambian información de enrutamiento cuando se produce un cambio de topología. Este intercambio permite a los routers aprender automáticamente sobre nuevas redes y también encontrar rutas alternativas cuando se produce una falla de enlace en la red actual.

Ventajas del enrutamiento estático:

El procesamiento de la CPU es mínimo. Es más fácil de comprender para el administrador. Es fácil de configurar.

Desventajas del enrutamiento estático:

La configuración y el mantenimiento son prolongados. La configuración es propensa a errores, especialmente en redes extensas. Se requiere la intervención del administrador para mantener la información cambiante de la ruta. No se adapta bien con las redes en crecimiento; el mantenimiento se torna cada vez más complicado. Requiere un conocimiento completo de toda la red para una correcta implementación.

Ventajas del enrutamiento dinámico:

El administrador tiene menos trabajo en el mantenimiento de la configuración cuando agrega o quita redes. Los protocolos reaccionan automáticamente a los cambios de topología. La configuración es menos propensa a errores. Es más escalable, el crecimiento de la red normalmente no representa un problema.

Desventajas del enrutamiento dinámico:

Se utilizan recursos del router (ciclos de CPU, memoria y ancho de banda del enlace). El administrador requiere más conocimientos para la configuración, verificación y resolución de problemas.

¿Qué es la convergencia?

La convergencia ocurre cuando todas las tablas de enrutamiento de los routers se encuentran en un estado de uniformidad. La red ha convergido cuando todos los routers tienen información completa y precisa sobre la red. El tiempo de convergencia es el tiempo que los routers tardan en compartir información, calcular las mejores rutas y actualizar sus tablas de enrutamiento. Una red no es completamente operativa hasta que la red haya convergido; por lo tanto, la mayoría de las redes requieren tiempos de convergencia cortos. La convergencia es cooperativa e independiente. Los routers comparten información entre sí pero deben calcular en forma independiente los impactos del cambio de topología en sus propias rutas. Dado que establecen un acuerdo con la nueva topología en forma independiente, se dice que convergen sobre este consenso.

Protocolos de enrutamiento por vector de distancia

Los protocolos de enrutamiento por vector de distancia incluyen el RIP, el IGRP y el EIGRP.

RIP

El Routing Information Protocol (RIP) se especificó originalmente en el RFC 1058. Sus características principales son las siguientes: Utiliza el conteo de saltos como métrica para la selección de rutas. Si el conteo de saltos de una red es mayor de 15, el RIP no puede suministrar una ruta para esa red. Por defecto, se envía un broadcast o multicast de las actualizaciones de enrutamiento cada 30 segundos.

IGRP

El Interior Gateway Routing Protocol (IGRP) es un protocolo patentado desarrollado por Cisco. Las características principales de diseño del IGRP son las siguientes: Se considera el ancho de banda, el retardo, la carga y la confiabilidad para crear una métrica compuesta. Por defecto, se envía un broadcast de las actualizaciones de enrutamiento cada 90 segundos. El IGRP es el antecesor de EIGRP y actualmente se considera obsoleto.

EIGRP

Enhanced IGRP (IGRP mejorado) es un protocolo de enrutamiento por vector de distancia, patentado por Cisco. Las características principales del EIGRP son las siguientes: Puede realizar un balanceo de carga con distinto costo. Utiliza el Algoritmo de actualización por difusión (DUAL) para calcular la ruta más corta. No existen actualizaciones periódicas, como sucede con el RIP y el IGRP. Las actualizaciones de enrutamiento sólo se envían cuando se produce un cambio en la topología.

Funcionamiento de los protocolos de enrutamiento por vector de distancia

Algunos protocolos de enrutamiento por vector de distancia solicitan al router que envíe periódicamente un broadcast de toda la tabla de enrutamiento para cada uno de los vecinos. Este método no es eficiente porque las actualizaciones no sólo consumen ancho de banda sino también los recursos de la CPU del router para procesar las actualizaciones.

El primer protocolo utilizado fue el Protocolo de información de enrutamiento (RIP). RIP aún es popular debido a su simplicidad y amplia compatibilidad. RIP posee las siguientes características clave: RIP es un protocolo de enrutamiento por vector de distancia. RIP utiliza el conteo de saltos como su única métrica para la selección de rutas. Las rutas publicadas con conteo de saltos mayores que 15 son inalcanzables. Se transmiten mensajes cada 30 segundos.

La versión 2 de RIP (RIPv2) se define en RFC 1723. Éste es el primer protocolo de enrutamiento sin clase que se discute en el curso. La figura ubica a RIPv2 en su propia perspectiva con respecto a otros protocolos de enrutamiento. Si bien RIPv2 es un protocolo de enrutamiento apropiado para algunos ambientes, pierde popularidad cuando se compara con protocolos de enrutamiento tales como EIGRP, OSPF e IS-IS, que ofrecen más funciones y son más escalables. Aunque puede ser menos popular que otros protocolos de enrutamiento, ambas versiones de RIP aún son apropiadas para algunas situaciones. Si bien RIP carece de las capacidades de muchos protocolos posteriores, su simplicidad y amplia utilización en varios sistemas operativos lo convierten en un candidato ideal para las redes homogéneas más pequeñas, donde es necesaria la compatibilidad con varios fabricantes, especialmente dentro de los ambientes UNIX. Debido a que necesitará entender RIPv2, incluso si no lo usa, este capítulo se concentrará en las diferencias entre un protocolo de enrutamiento con clase (RIPv1) y un protocolo de enrutamiento sin clase (RIPv2), más que en los detalles de RIPv2. La limitación principal de RIPv1 es que es un protocolo de enrutamiento con clase. Como usted sabe, los protocolos de enrutamiento con clase no incluyen la máscara de subred con la dirección de red en las actualizaciones de enrutamiento, lo que puede ocasionar problemas con las redes o subredes no contiguas que usan la Máscara de subred de longitud variable (VLSM). Como RIPv2 es un protocolo de enrutamiento sin clase, las máscaras de subred se incluyen en las actualizaciones de enrutamiento, lo que hace que RIPv2 sea más compatible con los ambientes de enrutamiento modernos. En realidad, RIPv2 es una mejora de las funciones y extensiones de RIPv1, más que un protocolo completamente nuevo. Algunas de estas funciones mejoradas incluyen: Direcciones de siguiente salto incluidas en las actualizaciones de enrutamiento. Uso de direcciones multicast al enviar actualizaciones. Opción de autenticación disponible. Como RIPv1, RIPv2 es un protocolo de enrutamiento por vector de distancia. Las dos versiones de RIP tienen las siguientes funciones y limitaciones: Uso de temporizadores de espera y otros temporizadores para ayudar a impedir routing loops. Uso de horizonte dividido u horizonte dividido con envenenamiento en reversa para ayudar también a impedir routing loops. Uso de updates disparados cuando hay un cambio en la topología para lograr una convergencia más rápida. Límite máximo en el conteo de saltos de 15 saltos, con el conteo de saltos de 16 que expresa una red inalcanzable.

Entradas relacionadas: