Distancias en geometría euclidiana
Enviado por Chuletator online y clasificado en Matemáticas
Escrito el en español con un tamaño de 3,97 KB
Distancia punto-punto | La distancia entre dos puntos es el módulo del vector que los une: | |
Distancia punto-recta | Nos dan un punto P. La distancia entre P y r es la altura del paralelogramo de la figura: | |
Distancia punto-plano | Para hallar la distancia entre punto y plano (del que conocemos una ecuación general) tenemos esta fórmula: | |
Distancia plano-plano (paralelos) | En las ecuaciones generales ha de aparecer el mismo vector normal para poder utilizar esta fórmula: | |
Distancia recta-recta | Nos dan una recta r que pasa por P y tiene vector director u. Nos dan una recta s que pasa por Q y tiene vector director v. La distancia entre las rectas es la distancia entre los planos verdes, es decir, es la altura del paralelepípedo determinado por u, v, PQ: |