Conceptos Fundamentales de Física del Estado Sólido y Propiedades de Materiales
Enviado por Chuletator online y clasificado en Física
Escrito el en español con un tamaño de 15,36 KB
Conceptos Clave en Física de Materiales y Estado Sólido
Masa Efectiva
La masa efectiva es la masa que parece tener un portador de carga (electrón o hueco) en un cristal según el modelo semiclásico de transporte. Bajo ciertas condiciones, los electrones (e⁻) y huecos (h⁺) de un cristal se comportan frente a campos magnéticos y eléctricos externos como si estuvieran libres en el vacío, pero con una masa diferente a la masa del electrón libre. Esta diferencia surge de las interacciones del portador con la red cristalina periódica. Cuanto mayor es la interacción con la red, mayor es la diferencia entre la masa del electrón libre y la masa efectiva.
Fotones
Los fotones son los cuantos del campo electromagnético, mediante los cuales se describe la luz y otras formas de radiación electromagnética.
Fonones
Los fonones son los cuantos del campo de desplazamientos iónicos (vibraciones de la red cristalina), mediante los cuales se describe la propagación del sonido y la energía térmica en sólidos.
Coeficiente de Hall (RH)
El Coeficiente de Hall (RH) se define como el cociente entre el valor del campo eléctrico transversal inducido (voltaje de Hall) y el producto de la densidad de corriente eléctrica que circula por el conductor y la magnitud del campo magnético aplicado perpendicularmente. El producto de este coeficiente y la conductividad eléctrica (σ) del material determina la movilidad de los portadores de carga (μ = RH * σ).
Material Ferroeléctrico
Un material ferroeléctrico es aquel que presenta las siguientes características:
- Posee una permitividad dieléctrica muy alta.
- Exhibe una polarización eléctrica espontánea y permanente, incluso en ausencia de campo eléctrico externo.
- Son materiales piroeléctricos (su polarización cambia con la temperatura) y piezoeléctricos (generan voltaje bajo presión mecánica y viceversa).
- A diferencia de otros materiales piroeléctricos, en los ferroeléctricos es posible invertir o reorientar la dirección de la polarización espontánea aplicando un campo eléctrico externo suficientemente fuerte (ciclo de histéresis).
- Sus propiedades son fuertemente dependientes de la temperatura (Tª). Al superar una temperatura crítica, conocida como Temperatura de Curie (TC), el material pierde su ferroelectricidad y pasa a un estado paraeléctrico.
Dispersión de Rayleigh
La dispersión de Rayleigh describe el fenómeno por el cual la intensidad de un haz de luz que atraviesa un medio transparente conteniendo centros de dispersión (partículas, moléculas, inhomogeneidades) disminuye gradualmente a medida que la luz se dispersa en múltiples direcciones. Este tipo de dispersión es aplicable específicamente a partículas aproximadamente esféricas con un diámetro significativamente menor que la longitud de onda (λ) de la radiación incidente (típicamente, diámetro < λ/10). La intensidad de la luz dispersada es inversamente proporcional a la cuarta potencia de la longitud de onda (I ∝ 1/λ⁴), lo que explica por qué el cielo es azul.
Dispersión de Mie
La dispersión de Mie es una teoría más general que describe la dispersión de la luz por partículas esféricas. Se aplica cuando el tamaño de las partículas es comparable o mayor a la longitud de onda (λ) de la luz incidente, situaciones donde la aproximación de Rayleigh ya no es válida. En la dispersión de Mie, la dispersión en la dirección de incidencia (hacia adelante) tiende a dominar sobre la dispersión en la dirección opuesta (hacia atrás). A medida que aumenta el tamaño de la partícula respecto a la longitud de onda incidente, los patrones de dispersión se vuelven más complejos y los haces dispersados tienden a concentrarse más en la dirección hacia adelante.
Ley de Bragg
La Ley de Bragg (o difracción de Bragg) describe la condición para que ondas (como rayos X o luz visible) que inciden sobre una estructura periódica (como un cristal atómico o un cristal fotónico) sufran interferencia constructiva y sean difractadas. Establece que la difracción intensa ocurre cuando el ángulo de incidencia θ, la longitud de onda λ y el espaciado d entre los planos de la estructura satisfacen la relación: nλ = 2d sin(θ), donde n es un número entero (orden de difracción). Cualquier disposición periódica de partículas, átomos o incluso huecos, espaciados por distancias similares a la longitud de onda de la radiación incidente, la difractará de acuerdo con esta ley.
Cristales Fotónicos
Los cristales fotónicos son estructuras dieléctricas artificiales o naturales con una periodicidad en su índice de refracción a escala de la longitud de onda de la luz. Están diseñados para difractar la luz de manera específica, controlando su propagación de forma análoga a como los cristales semiconductores controlan el flujo de electrones. Dado que la separación característica entre sus elementos (o la periodicidad) es similar a la longitud de onda de la luz visible o infrarroja, se aplica la Ley de Bragg para describir su interacción con la luz. Físicamente, a menudo consisten en una disposición periódica (1D, 2D o 3D) de materiales transparentes con distintos índices de refracción, como una pila de capas alternas.
Ley de Beer-Lambert
La Ley de Beer-Lambert (o Ley de Beer-Lambert-Bouguer) relaciona la atenuación de la luz (u otra radiación electromagnética) con las propiedades del material a través del cual viaja. Cuando los centros de absorción están uniformemente distribuidos por el material y no interactúan entre sí, la cantidad de radiación absorbida (o la transmitancia) viene dada por esta ley. Establece que la absorbancia (A) es directamente proporcional a la concentración (c) de las especies absorbentes y a la longitud del camino óptico (l) que la luz atraviesa: A = εcl, donde ε es la absortividad molar o coeficiente de extinción.
Velocidad de Arrastre (o Deriva)
La velocidad de arrastre (o velocidad de deriva) es la velocidad promedio que adquieren los portadores de carga (electrones o huecos) en un material conductor o semiconductor bajo la influencia de un campo eléctrico externo. Aunque los portadores se mueven a altas velocidades aleatorias (velocidad térmica), el campo eléctrico impone una pequeña velocidad neta en una dirección específica, que es la velocidad de arrastre.
Constante Dieléctrica (Permitividad Relativa)
La constante dieléctrica (κ o εr), también conocida como permitividad relativa, es una medida adimensional que indica la relación entre la permitividad eléctrica absoluta (ε) de un material dieléctrico y la permitividad eléctrica del vacío (ε0): εr = ε / ε0. Describe la habilidad relativa del material para polarizarse en respuesta a un campo eléctrico externo y, consecuentemente, su capacidad para almacenar energía eléctrica en forma de campo eléctrico (por ejemplo, en un condensador).
Recorrido Libre Medio
El recorrido libre medio (λ o l) es la distancia promedio que una partícula (como un electrón, átomo o molécula) viaja entre colisiones sucesivas (eventos de dispersión o scattering) que modifican su dirección, energía o momento. En el contexto de los electrones de conducción en un metal, es la distancia promedio que recorren sin ser dispersados por las vibraciones de la red (fonones), impurezas o defectos cristalinos.
Tiempo de Relajación
El tiempo de relajación (τ) es el tiempo característico promedio que transcurre entre sucesivos procesos de dispersión (scattering) que sufre una partícula (como un electrón en un conductor) o el tiempo necesario para que un sistema perturbado regrese a su estado de equilibrio. Está directamente relacionado con el recorrido libre medio y la velocidad promedio de la partícula.
Regla de Matthiessen
La Regla de Matthiessen establece que la resistividad eléctrica total (ρtotal) de un material metálico cristalino es aproximadamente la suma de las resistividades debidas a diferentes fuentes de dispersión de electrones, asumiendo que estas son independientes. Principalmente, considera la dispersión por vibraciones térmicas de la red (dependiente de la temperatura, ρT) y la dispersión por defectos estáticos (impurezas, vacantes, dislocaciones, etc., independiente de la temperatura, ρ0): ρtotal ≈ ρT(T) + ρ0. Esta regla permite separar los efectos de la temperatura y los defectos a nivel atómico sobre la resistividad.
Semiconductor Intrínseco y Extrínseco
Semiconductor Intrínseco
Un semiconductor intrínseco es un semiconductor puro, cuyas propiedades eléctricas (como la conductividad) están determinadas fundamentalmente por los electrones excitados térmicamente desde la banda de valencia a la banda de conducción, y no por la presencia de impurezas. En un semiconductor intrínseco, la concentración de electrones (n) es igual a la concentración de huecos (p): n = p = ni (concentración intrínseca).
Semiconductor Extrínseco
Un semiconductor extrínseco es aquel al que se le han añadido intencionadamente impurezas (proceso llamado dopaje) para modificar sus propiedades eléctricas. Los átomos dopantes introducen niveles de energía adicionales en la banda prohibida, controlando así el número y el tipo (electrones o huecos) de portadores de carga mayoritarios. Si se dopa con donadores, se obtiene un semiconductor tipo N (mayoría de electrones). Si se dopa con aceptores, se obtiene un semiconductor tipo P (mayoría de huecos).
Densidad de Corriente de Deriva
La densidad de corriente de deriva (Jderiva) es el flujo neto de carga eléctrica por unidad de área y tiempo, originado por el movimiento de los portadores de carga (electrones y huecos) debido a la aplicación de un campo eléctrico (E) a un material conductor o semiconductor. Este campo ejerce una fuerza sobre los portadores, provocando que adquieran una velocidad de arrastre (vd) y generando una corriente. Se calcula como: Jderiva = nqvd,n + pqvd,p (en semiconductores) o Jderiva = nqvd (en metales), donde n y p son las concentraciones de electrones y huecos, q es la carga elemental, y vd,n y vd,p sus respectivas velocidades de deriva.
Dieléctricos
Los dieléctricos son materiales aislantes eléctricos caracterizados por una baja conductividad eléctrica y, por tanto, una alta resistividad. Su función principal es aislar eléctricamente componentes o almacenar energía eléctrica. Son capaces de soportar un campo eléctrico estático y aislarlo de su entorno. En muchos dieléctricos (lineales), la polarización eléctrica (P) inducida por un campo eléctrico externo (E) es directamente proporcional a la intensidad de dicho campo: P = ε0χeE, donde χe es la susceptibilidad eléctrica. Un parámetro fundamental que describe un dieléctrico es su constante dieléctrica o permitividad relativa (εr), la cual cuantifica la habilidad del material para polarizarse y almacenar carga eléctrica en presencia de un campo.
Resistencia Dieléctrica (Rigidez Dieléctrica)
La resistencia dieléctrica, más comúnmente llamada rigidez dieléctrica, es el máximo campo eléctrico que un material dieléctrico puede soportar en condiciones ideales sin sufrir una ruptura dieléctrica (pérdida de sus propiedades aislantes, usualmente mediante una descarga disruptiva o arco eléctrico). Se mide típicamente en voltios por unidad de espesor (e.g., kV/mm). Representa el límite superior del campo eléctrico que puede mantenerse entre conductores separados por el dieléctrico.
Polarizabilidad
La polarizabilidad (α) es una medida de la capacidad de una distribución de carga, como la nube electrónica de un átomo o molécula, para distorsionarse (polarizarse) bajo la influencia de un campo eléctrico externo local. Cuantifica la facilidad con la que se induce un momento dipolar eléctrico (p) en la molécula o átomo por la acción de dicho campo (E): p = αE. Es una propiedad intrínseca de la especie química.
Comparación de Modelos de Calor Específico: Debye vs. Einstein
Tanto el modelo de Debye como el de Einstein buscan explicar la capacidad calorífica (CV) de los sólidos, especialmente a bajas temperaturas, considerando las vibraciones cuantizadas de la red (fonones). Ambos utilizan expresiones para la relación de dispersión (relación entre frecuencia ω y vector de onda k) para calcular CV.
Modelo de Debye
- Aproximación: Reemplaza el espectro complejo de vibraciones reales (ramas acústicas y ópticas) por tres ramas acústicas idealizadas con una relación de dispersión lineal (ω = vsk, donde vs es la velocidad del sonido, considerada constante) hasta una frecuencia máxima de corte (ωD, frecuencia de Debye).
- Integración: Los límites de la integración para calcular la energía total se extienden sobre una esfera en el espacio k de radio kD (vector de onda de Debye), tal que el número total de modos coincida con los grados de libertad del sólido (3N).
- Temperatura de Debye (ΘD): Introduce una temperatura característica, TD = ħωD/kB, que separa la región de bajas temperaturas (donde dominan los efectos cuánticos y CV ∝ T³) de la región de altas temperaturas (donde se recupera el límite clásico de Dulong-Petit, CV ≈ 3NkB).
- Precisión: Proporciona una buena descripción de CV a bajas temperaturas para muchos sólidos.
Modelo de Einstein
- Aproximación: Simplifica aún más el espectro de vibraciones, asumiendo que todos los átomos vibran independientemente con la misma frecuencia constante (ωE, frecuencia de Einstein). Es como si todas las ramas (especialmente las ópticas) fueran reemplazadas por una única frecuencia.
- Aplicabilidad: Es más adecuado para describir la contribución de los fonones ópticos, que a menudo son poco dispersivos (su frecuencia varía poco con k).
- Precisión: Falla a bajas temperaturas, prediciendo un decaimiento exponencial de CV en lugar de la ley T³ observada experimentalmente y predicha por Debye. Sin embargo, da el límite correcto de Dulong-Petit a altas temperaturas.