Aritmètica de l'Economia i Estadística Bidimensional
Enviado por Chuletator online y clasificado en Economía
Escrito el en
catalán con un tamaño de 167,57 KB
Aritmètica de l'Economia
Definicions de conceptes financers
- Intermediaris financers: Són entitats (com els bancs) que actuen com a enllaç entre les persones que volen prestar diners (oferents de fons) i les que els necessiten (demandants de fons).
- Oferents de fons: Són les persones o entitats que tenen diners i poden prestar-los a altres.
- Demandants de fons: Són les persones o entitats que necessiten diners, per exemple, per fer una compra o una inversió.
- Interès: És la quantitat de diners que es paga pel fet de rebre un préstec o pel fet de dipositar diners en una entitat financera.
- Tipus d'interès: És el percentatge que indica quant interès es paga o es cobra per cada unitat monetària (normalment per cada euro) durant un any.
- Capital: És la quantitat de diners inicial que es presta o s'inverteix.
- Interès simple: És el tipus d'interès que es calcula sempre sobre el capital inicial. Els interessos generats no es reinverteixen, sinó que es retiren cada període.
- Interès compost: És el tipus d'interès on els interessos generats s'afegeixen al capital inicial, i en el següent període generen nous interessos. Això s'anomena capitalització.
- Anualitat de capitalització: És una aportació fixa de diners feta regularment (per exemple, cada any) amb l'objectiu d'obtenir un capital final. Els interessos es calculen en règim d'interès compost.
- Progressió geomètrica: És una successió de nombres on cada terme es calcula multiplicant l'anterior per una raó fixa. S'utilitza per calcular l'acumulació d'aportacions periòdiques amb interès compost.
- Anualitat d'amortització: És una quota fixa que es paga regularment (normalment cada any) per retornar un préstec amb interessos. Inclou una part per pagar el capital i una altra per pagar els interessos.
- Quota d'amortització: És la part de la quota que serveix per reduir el deute (capital pendent).
- Quota d'interès: És la part de la quota que correspon al pagament dels interessos generats pel deute pendent.
- Anualitat: En general, és la suma fixa que es paga o s'ingressa cada any. Pot ser de capitalització (estalvi) o d'amortització (retorn de préstec).
- Capital amortitzat: És la part del deute que ja s'ha pagat (mitjançant les quotes d'amortització).
- Capital pendent: És la part del préstec que encara queda per pagar.
Explicació de les fórmules
Interès simple
Fórmula principal:
- I: Interès generat.
- C0: Capital inicial (quantitat de diners invertida o prestada).
- i: Tipus d'interès anual (en tant per u, ex: 5% → 0,05).
- t: Temps de la inversió o préstec (en anys).
Altres fórmules derivades:
Cf: Capital final (capital inicial més interessos).
Interès compost
- Cf: Capital final.
- C0: Capital inicial.
- i: Tipus d'interès anual (tant per u).
- t: Nombre d'anys.
Capitalització fraccionada:
- Semestral:
- Trimestral:
- Mensual:
Anualitat de capitalització
Fórmula:
- Cf: Capital final acumulat.
- A: Quota o anualitat (quantitat que s'aporta cada any).
- i: Tipus d'interès anual (tant per u).
- t: Nombre d'anys.
Anualitat d'amortització
Fórmula per calcular la quota a pagar:
- a: Quota anual a pagar (anualitat d'amortització).
- D: Deute (capital que s'ha de retornar).
- i: Tipus d'interès anual.
- t: Nombre d'anys.
Variables estadístiques bidimensionals
1. Definició i taula de doble entrada
Definició: És aquella en què s'estudien dues variables alhora, observant com es relacionen entre elles (ex: alçada i pes d'una persona).
Taula de doble entrada: Taula que mostra la freqüència amb què apareixen parelles de valors corresponents a les dues variables.
- fᵢⱼ: freqüència absoluta de la parella (xᵢ, yⱼ).
- n: total d'observacions.
- fᵢ.: suma de les freqüències per a un valor fix de xᵢ (freqüència marginal de x).
- f.ⱼ: suma de les freqüències per a un valor fix de yⱼ (freqüència marginal de y).
2. Gràfics estadístics bidimensionals
Diagrama de dispersió (núvol de punts): Representació gràfica de les parelles (x, y) d'una variable bidimensional. Permet visualitzar si hi ha una relació o tendència entre les variables.
3. Dependència entre variables
Definició: Hi ha dependència si conèixer el valor d'una variable ajuda a predir o conèixer el valor de l'altra.
Tipus:
- Dependència funcional: una variable determina completament l'altra.
- Dependència estadística: hi ha una associació, però no total.
4. Correlació
Definició: Mesura el grau d'associació lineal entre dues variables. Es pot expressar mitjançant:
Covariància:
Coeficient de correlació: