El sistema solar

Enviado por Programa Chuletas y clasificado en Geografía

Escrito el en español con un tamaño de 95,17 KB

Nuestro lugar en el universo es un pequeño planeta que gira alrededor de una estrella mediana, ubicada en el brazo de una enorme galaxia, una más de las incontables que se encuentran dispersas en el universo. Desde nuestro mundo natal (el único lugar donde podemos asegurar que existe vida), miramos el espacio y contemplamos las maravillas del cosmos. Cerca de la Tierra se encuentran los planetas y demás cuerpos del sistema solar, orbitando nuestro fecundo y familiar Sol; mucho más lejos se distinguen las otras estrellas de nuestra galaxia, algunas brillantes y calientes, otras diminutas y pálidas. Podemos observar nubes de gases de donde surgen las estrellas y percibir extraños fenómenos que indican el enigmático vacío que han dejado las estrellas muertas en violentos cataclismos; también vemos lagunas lácteas que señalan la posición de otras galaxias y, forzando hasta sus límites los instrumentos astronómicos, los científicos investigan los misterios fundamentales: cómo pudo haberse iniciado el universo y cuál podría ser su fin.

El sistema solar está formado por el Sol, nueve planetasy sus satélites, asteroidescometasy meteoroides, y polvo y gas interplanetario. El sistema solar es el único sistema planetario existente conocido, aunque en 1980 se encontraron algunas estrellasrelativamente cercanas rodeadas por un envoltorio de material orbitante de un tamaño indeterminado o acompañadas por objetos que se suponen que son enanas marrones o enanas pardas. Muchos astrónomos creen probable la existencia de numerosos sistemas planetarios de algún tipo en el Universo.

El Sol contiene el 99.85% de toda la materia en el Sistema Solar. Los planetas, los cuales están condensados del mismo material del que está formado el Sol, contienen sólo el 0.135% de la masa del sistema solar. Júpiter contiene más de dos veces la materia de todos los otros planetas juntos. Los satélites de los planetas, cometas, asteroides, meteoroides, y el medio interplanetario constituyen el restante 0.015%. La siguiente tabla es una lista de la distribución de la masa dentro de nuestro Sistema Solar.

Los planetas principales

En la actualidad se conocen nueve planetas principales. Normalmente se dividen en dos grupos: los planetas interiores o terrestres (MercurioVenusTierraMarte) y los planetas exteriores o jovianos (JúpiterSaturnoUrano,NeptunoPlutón).

Los interiores son los cuatro primeros. Son pequeños y se componen sobre todo de roca compacta y hierro (de ahí el nombre terrestres). Los planetas, Venus, Tierra, y Marte tienen atmósferas significantes mientras que Mercurio casi no tiene.

Los jovianos (relativos a Júpiter) son gigantescos comparados con la Tierra y tienen naturaleza gaseosa como la de Júpiter (de ahí ese nombre). Se componen, principalmente, de hidrógeno, hielo y helio.

Si se pudiera mirar hacia el sistema solar por encima del polo norte de la Tierra, parecería que los planetas se movían alrededor del Sol en dirección contraria a la de las agujas del reloj. Todos los planetas, excepto Venus y Urano, giran sobre su eje en la misma dirección. Todo el sistema es bastante plano (sólo las órbitas de Mercurio y Plutón son inclinadas). La de Plutón es tan elíptica que hay momentos que se acerca más al Sol que Neptuno.

Los sistemas de satélites siguen el mismo comportamiento que sus planetas principales, pero se dan muchas excepciones. Tanto Júpiter, como Saturno y Neptuno tienen uno o más satélites que se mueven a su alrededor en órbitas retrógradas (en el sentido de las agujas del reloj) y muchas órbitas de satélites son muy elípticas. Júpiter, además, tiene atrapados dos cúmulos de asteroides (los llamados Troyanos), que se encuentran a 60° por delante y por detrás del planeta en sus órbitas alrededor del Sol. (Algunos satélites de Saturno tienen atrapados de forma similar cuerpos más pequeños). Los cometas muestran una distribución de órbitas alrededor del Sol más o menos esférica.

Teorías sobre el origen

A pesar de sus diferencias, los miembros del sistema solar forman probablemente una familia común; parece ser que se originaron al mismo tiempo.

Entre los primeros intentos de explicar el origen de este sistema está la hipótesis nebular del filósofo alemán Immanuel Kant y del astrónomo y matemático francés Pierre Simon de Laplace. De acuerdo con dicha teoría una nube de gas se fragmentó en anillos que se condensaron formando los planetas. Las dudas sobre la estabilidad de dichos anillos han llevado a algunos científicos a considerar algunas hipótesis de catástrofes como la de un encuentro violento entre el Sol y otra estrella. Estos encuentros son muy raros, y los gases calientes, desorganizados por las mareas se dispersarían en lugar de condensarse para formar los planetas.

Las teorías actuales conectan la formación del sistema solar con la formación del Sol, ocurrida hace 4.700 millones de años. La fragmentación y el colapso gravitacional de una nube interestelar de gas y polvo, provocada quizá por las explosiones de una supernova cercana, puede haber conducido a la formación de una nebulosa solar primordial. El Sol se habría formado entonces en la región central, más densa. La temperatura es tan alta cerca del Sol que incluso los silicatos, relativamente densos, tienen dificultad para formarse allí. Este fenómeno puede explicar la presencia cercana al Sol de un planeta como Mercurio, que tiene una envoltura de silicatos pequeña y un núcleo de hierro denso mayor de lo usual. (Es más fácil para el polvo y vapor de hierro aglutinarse cerca de la región central de una nebulosa solar que para los silicatos más ligeros.) A grandes distancias del centro de la nebulosa solar, los gases se condensan en sólidos como los que se encuentran hoy en la parte externa de Júpiter. La evidencia de una posible explosión de supernova de formación previa aparece en forma de trazas de isótopos anómalos en las pequeñas inclusiones de algunos meteoritos. Esta asociación de la formación de planetas con la formación de estrellas sugiere que miles de millones de otras estrellas de nuestra galaxia también pueden tener planetas. La abundancia de estrellas múltiples y binarias, así como de grandes sistemas de satélites alrededor de Júpiter y Saturno, atestiguan la tendencia de la nubes de gas a desintegrarse fragmentándose en sistemas de cuerpos múltiples.

El Sol es la estrellaque, por el efecto gravitacional de su masa, domina el sistema planetario que incluye a la Tierra. Es el elemento más importante en nuestro sistema solar y el objeto más grande que contiene aproximadamente el 98% de la masa total del sistema solar. Mediante la radiación de su energía electromagnética, aporta directa o indirectamente toda la energía que mantiene la vida en la Tierra, porque todo el alimento y el combustible procede en última instancia de las plantas que utilizan la energía de la luz del Sol.

A causa de su proximidad a la Tierra y como es una estrella típica, el Sol es un recurso extraordinario para el estudio de los fenómenos estelares. No se ha estudiado ninguna otra estrella con tanto detalle. La estrella más cercana al Sol está a 4,3 años luz; para observar los rasgos de su superficie comparables a los que se pueden ver de forma habitual en el Sol, se necesitaría un telescopio de casi 30 km de diámetro. Además, un telescopio así tendría que ser colocado en el espacio para evitar distorsiones causadas por la atmósfera de la Tierra.

Historia de la observación científica

Durante la mayor parte del tiempo que los seres humanos han estado sobre la Tierra, el Sol ha sido considerado un objeto de especial importancia. Muchas culturas antiguas adoraron al Sol y muchas más reconocieron su importancia en el ciclo de la vida. Aparte de su relevancia posicional para señalar, por ejemplo, solsticios, equinoccios y eclipses, el estudio cuantitativo del Sol data del descubrimiento de las manchas solares; el estudio de sus propiedades físicas no comenzó hasta mucho más tarde. Los astrónomos chinos observaron manchas solares a simple vista ya en el año 200 a.C. Pero en 1611, Galileo utilizó el telescopio, recién inventado, para observarlas de modo sistemático. El descubrimiento de Galileo significó el comienzo de una nueva aproximación al estudio del Sol, que pasó a ser considerado un cuerpo dinámico, en evolución, y sus propiedades y variaciones pudieron ser, por tanto, comprendidas científicamente.

El siguiente avance importante en el estudio del Sol se produjo en 1814 como resultado directo del invento del espectroscopio por el físico alemán Joseph von Fraunhofer. Un espectroscopio divide la luz en las longitudes de onda que la componen, o colores. Aunque el espectro del Sol había sido observado ya en 1666 por el matemático y científico inglés Isaac Newton, la precisión del trabajo de Fraunhofer sentó las bases para los primeros intentos de una explicación teórica detallada de la atmósfera solar.

Parte de la radiación de la superficie visible del Sol (la fotosfera) es absorbida por el gas, algo más frío, que hay sobre ella. Sin embargo, sólo se absorben longitudes de onda de radiación particulares, que dependen de las especies atómicas presentes en la atmósfera solar. En 1859, el físico alemán Gustav Kirchhoff demostró que la falta de radiación en ciertas longitudes de onda del espectro solar de Fraunhofer se debía a la absorción de radiación por átomos de algunos de los mismos elementos presentes en la Tierra. Con esto, no sólo demostró que el Sol está compuesto de materia común, sino que también planteó la posibilidad de obtener información detallada sobre los objetos celestes mediante el estudio de la luz emitida por ellos. Éste fue el comienzo de la astrofísica.

El progreso en el conocimiento del Sol ha continuado gracias a la habilidad de los científicos para hacer observaciones nuevas o mejorar las anteriores. Entre los avances en instrumentos de observación que han influido de forma significativa en la física solar están el espectroheliógrafo, que mide el espectro de los rasgos solares individuales; el coronógrafo, que permite el estudio de la corona solar sin eclipses, y el magnetógrafo, inventado por el astrónomo estadounidense Horace W. Babcock en 1948, que mide la fuerza del campo magnético de la superficie solar. El desarrollo de cohetes y satélites ha permitido a los científicos observar la radiación en longitudes de onda no transmitidas a través de la atmósfera de la Tierra. Entre los instrumentos desarrollados para su uso en el espacio se encuentran los coronógrafos, los telescopios y los espectrógrafos sensibles a una radiación ultravioleta extrema y a los rayos X. Los instrumentos especiales han revolucionado el estudio de la atmósfera exterior al Sol.

Composición y estructura

La energía solar se crea en el interior del Sol. Es aquí donde la temperatura (15.000.000° C) y la presión (340 mil veces la presión del aire en la Tierra al nivel del mar) son tan intensas que se llevan a cabo las reacciones nucleares. Éstas reacciones causan que cuatro átomos de hidrógeno se fusionen y formen una partícula alfa ó núcleo de helio. La partícula alfa tiene cerca de 0.7 % menos masa que los cuatro protones. La diferencia en la masa es expulsada como energía y es llevada a la superficie del Sol, a través de un proceso conocido como convección, donde se liberan luz y calor. La energía generada en el centro del Sol tarda un millón de años para alcanzar la superficie solar. Cada segundo se convierten 700 millones de toneladas de hidrógeno en cenizas de helio. En el proceso se liberan 5 millones de toneladas de energía pura; por lo cual, el Sol cada vez se vuelve más ligero.

La energía producida de esta forma es transportada a la mayor parte de la superficie solar por radiación. Sin embargo, más cerca de la superficie, en la zona de convección que ocupa el último tercio del radio solar, la energía es transportada por la mezcla turbulenta de gases. La fotosfera es la superficie superior de la zona de convección. Se pueden ver pruebas de la turbulencia en la zona de convección observando la fotosfera y la atmósfera situada encima de ella.

Las células turbulentas de la fotosfera le confieren una apariencia irregular y heterogénea. Este modelo, conocido como granulación solar, lo provoca la turbulencia en los niveles más altos de la zona de convección. Cada gránulo mide unos 2.000 km de ancho. Aunque el modelo de granulación siempre está presente, los gránulos individuales solamente duran unos 10 minutos. También se presenta un modelo de convección mucho mayor, provocado por la turbulencia que se extiende en las profundidades de la zona de convección. Este modelo de sobregranulación contiene células que duran un día y tienen 30.000 km de ancho como media.

Manchas solares

George Ellery Hale descubrió en 1908 que las manchas solares (áreas más frías de la fotosfera) presentan campos magnéticos fuertes. Estas manchas solares se suelen dar en parejas, con las dos manchas con campos magnéticos que señalan sentidos opuestos. El ciclo de las manchas solares, en el que la cantidad de manchas solares varía de menos a más y vuelve a disminuir al cabo de unos 11 años, se conoce por lo menos desde principios del siglo XVIII. Sin embargo, el complejo modelo magnético asociado con el ciclo solar sólo se comprobó tras el descubrimiento del campo magnético del Sol.

Como cada mancha solar dura como mucho unos pocos meses, el ciclo solar de 22 años refleja los procesos asentados y de larga duración en el Sol y no las propiedades de las manchas solares individuales. Aunque no se comprenden del todo, los fenómenos del ciclo solar parecen ser el resultado de las interacciones del campo magnético del Sol con la zona de convección en las capas exteriores. Además, estas interacciones se ven afectadas por la rotación del Sol, que no es la misma en todas las latitudes. El Sol gira una vez cada 27 días cerca del ecuador, pero una vez cada 31 días más cerca de los polos.

La corona

La atmósfera solar exterior que se extiende varios radios solares desde el disco del Sol es la corona. Todos los detalles estructurales de la corona se deben al campo magnético. La mayor parte de la corona se compone de grandes arcos de gas caliente: arcos más pequeños dentro de las regiones activas y arcos mayores entre ellas. Las formas arqueadas y a veces rizadas se deben al campo magnético.

En los años cuarenta se descubrió que la corona es mucho más cálida que la fotosfera. La fotosfera del Sol, o superficie visible, tiene una temperatura de casi 6.000º C. La cromosfera, que se extiende varios miles de kilómetros por encima de la fotosfera, tiene una temperatura cercana a los 30.000º C. Pero la corona, que se extiende desde justo encima de la cromosfera hasta el límite con el espacio interplanetario, tiene una temperatura de 1.000.000º C. Para mantener esta temperatura, la corona necesita un suministro de energía.

La búsqueda del mecanismo por el cual la energía llega a la corona es uno de los problemas clásicos de la astrofísica. Todavía está sin resolver, aunque se han propuesto muchas explicaciones. Las recientes observaciones del espacio han mostrado que la corona es una colección de rizos magnéticos, y cómo se calientan estos rizos se ha convertido en el foco principal de la investigación astrofísica.

El campo magnético también puede retener material más frío encima de la superficie del Sol, aunque este material sólo permanece estable unos pocos días. Estos fenómenos se pueden observar durante un eclipse como pequeñas regiones, conocidas como protuberancias, en el mismo extremo del Sol, como joyas de una corona. Están en calma, pero ocasionalmente entran en erupción, arrojando material solar al espacio.

Viento solar

En uno o dos radios solares desde la superficie del Sol, el campo magnético de la corona tiene la fuerza suficiente para retener el material gaseoso y caliente de la corona en grandes circuitos. Cuanto más lejos está del Sol, el campo magnético es más débil y el gas de la corona puede arrojar literalmente el campo magnético al espacio exterior. Cuando sucede esto, la materia recorre grandes distancias a lo largo del campo magnético.

El flujo constante del material arrojado desde la corona es conocido como viento solar y suele llegar de las regiones denominadas agujeros de la corona. Allí, el gas es más frío y menos denso que en el resto de la corona, produciendo una menor radiación. El viento solar de los grandes agujeros de la corona (que puede durar varios meses) es muy fuerte. Debido a la rotación solar, estas regiones de fuerte viento solar, conocidas como corrientes de viento solar a gran velocidad, suelen repetirse cada 27 días vistas desde la Tierra. El viento solar provoca alteraciones que se pueden detectar desde el campo magnético de la Tierra.

Evolución solar

El pasado y el futuro del Sol se han deducido de los modelos teóricos de estructura estelar. Durante sus primeros 50 millones de años, el Sol se contrajo hasta llegar a su tamaño actual. La energía liberada por el gas calentaba el interior y, cuando el centro estuvo suficientemente caliente, la contracción cesó y la combustión nuclear del hidrógeno en helio comenzó en el centro. El Sol ha estado en esta etapa de su vida durante unos 4.500 millones de años.

En el núcleo del Sol hay hidrógeno suficiente para durar otros 4.500 millones de años. Cuando se gaste este combustible, el Sol cambiará: según se vayan expandiendo las capas exteriores hasta el tamaño actual de la órbita de la Tierra, el Sol se convertirá en una gigante roja, algo más fría que hoy pero 10.000 veces más brillante a causa de su enorme tamaño. Sin embargo, la Tierra no se consumirá porque se moverá en espiral hacia afuera, como consecuencia de la pérdida de masa del Sol. El Sol seguirá siendo una gigante roja, con reacciones nucleares de combustión de helio en el centro, durante sólo 500 millones de años. No tiene suficiente masa para atravesar sucesivos ciclos de combustión nuclear o un cataclismo en forma de explosión, como les ocurre a algunas estrellas. Después de la etapa de gigante roja, se encogerá hasta ser una enana blanca, aproximadamente del tamaño de la Tierra, y se enfriará poco a poco durante varios millones de años. Este proceso puede tomarle un trillón de años.

Desde la perspectiva que tenemos en la Tierra, nuestro planeta parece ser grande y fuerte con un océano de aire interminable. Desde el espacio, los astronautas frecuentemente tienen la impresión de que la Tierra es pequeña, con una delgada y frágil capa de atmósfera. Para un viajero espacial, las características distintivas de la Tierra son las aguas azules, masas de tierra café y verde y nubes blancas contrastando con un fondo negro.

Muchos sueñan con viajar en el espacio y ver las maravillas del universo. En realidad todos nosotros somos viajeros espaciales. Nuestra nave es el planeta Tierra, viajando a una velocidad de 108.000 kilómetros por hora.

La Tierra es el tercer planetamás cercano al Sol, a una distancia de alrededor de 150 millones de kilómetros y el quinto en cuanto a tamaño de los nueve planetas principales. Tiene un diámetro de 12.756 kilómetros, solamente unos cuantos kilómetros más grande que el diámetro de Venus. Nuestra atmósfera está compuesta de un 78 por ciento de nitrógeno, 21 por ciento de oxígeno y 1 por ciento de otros constituyentes. Es el único planeta conocido que tiene vida, aunque algunos de los otros planetas tienen atmósferas y contienen agua.

La Tierra no es una esfera perfecta, sino que tiene forma de pera. Cálculos basados en las perturbaciones de las órbitas de los satélites artificialesrevelan que la Tierra es una esfera imperfecta porque el ecuador se engrosa 21 km; el polo norte está dilatado 10 m y el polo sur está hundido unos 31 metros.

Movimiento

Al igual que todo el sistema solar, la Tierra se mueve por el espacio a razón de unos 20,1 km/s o 72,360 km/h hacia la constelación de Hércules. Sin embargo, la galaxiaVía Lácteacomo un todo, se mueve hacia la constelación Leo a unos 600 km/s. La Tierra y su satélite, laLuna, también giran juntas en una órbita elíptica alrededor del Sol. A la Tierra le toma 365,256 días viajar alrededor del Sol y 23,9345 horas para que una revolución completa. La excentricidad de la órbita es pequeña, tanto que la órbita es prácticamente un círculo. La circunferencia aproximada de la órbita de la Tierra es de 938.900.000 km y nuestro planeta viaja a lo largo de ella a una velocidad de unos 106.000 km/h. La Tierra gira sobre su eje una vez cada 23 horas, 56 minutos y 4,1 segundos. Por lo tanto, un punto del ecuador gira a razón de un poco más de 1.600 km/h y un punto de la Tierra a 45° de altitud N, gira a unos 1.073 km/h.

Composición

Se puede considerar que la Tierra se divide en cinco partes: la primera, la atmósfera, es gaseosa; la segunda, la hidrosfera, es líquida; la tercera, cuarta y quinta, la litosfera, el manto y el núcleo son sólidas. La atmósfera es la cubierta gaseosa que rodea el cuerpo sólido del planeta. Aunque tiene un grosor de más de 1.100 km, aproximadamente la mitad de su masa se concentra en los 5,6 km más bajos. La litosfera, compuesta sobre todo por la fría, rígida y rocosa corteza terrestre, se extiende a profundidades de 100 km. La hidrosfera es la capa de agua que, en forma de océanos, cubre el 70,8% de la superficie de la Tierra. El manto y el núcleo son el pesado interior de la Tierra y constituyen la mayor parte de su masa.

La hidrosfera se compone principalmente de océanos, pero en sentido estricto comprende todas las superficies acuáticas del mundo, como mares interiores, lagos, ríos y aguas subterráneas. La profundidad media de los océanos es de 3.794 m, más de cinco veces la altura media de los continentes. La masa de los océanos es de 1.350.000.000.000.000.000 toneladas, o el 1/4.400 de la masa total de la Tierra.

Las rocas de la litosfera tienen una densidad media de 2,7 veces la del agua y se componen casi por completo de 11 elementos, que juntos forman el 99,5% de su masa. El más abundante es el oxígeno (46,60% del total), seguido por el silicio (27,72%), aluminio (8,13%), hierro (5,0%), calcio (3,63%), sodio (2,83%), potasio (2,59%), magnesio (2,09%) y titanio, hidrógeno y fósforo (totalizando menos del 1%). Además, aparecen otros 11 elementos en cantidades del 0,1 al 0,02%. Estos elementos, por orden de abundancia, son: carbón, manganeso, azufre, bario, cloro, cromo, flúor, circonio, níquel, estroncio y vanadio. Los elementos están presentes en la litosfera casi por completo en forma de compuestos más que en su estado libre.

La litosfera comprende dos capas (la corteza y el manto superior) que se dividen en unas doce placas tectónicas rígidas. La corteza misma se divide en dos partes. La corteza siálica o superior, de la que forman parte los continentes, está constituida por rocas cuya composición química media es similar a la del granito y cuya densidad relativa es de 2,7. La corteza simática o inferior, que forma la base de las cuencas oceánicas, está compuesta por rocas ígneas más oscuras y más pesadas como el gabro y el basalto, con una densidad relativa media aproximada de 3.

La litosfera también incluye el manto superior. Las rocas a estas profundidades tienen una densidad de 3,3. El manto superior está separado de la corteza por una discontinuidad sísmica, la discontinuidad de Mohorovicic, y del manto inferior por una zona débil conocida como astenosfera. Las rocas plásticas y parcialmente fundidas de la astenosfera, de 100 km de grosor, permiten a los continentes trasladarse por la superficie terrestre y a los océanos abrirse y cerrarse.

El denso y pesado interior de la Tierra se divide en una capa gruesa, el manto, que rodea un núcleo esférico más profundo. El manto se extiende desde la base de la corteza hasta una profundidad de unos 2.900 km. Excepto en la zona conocida como astenosfera, es sólido y su densidad, que aumenta con la profundidad, oscila de 3,3 a 6. El manto superior se compone de hierro y silicatos de magnesio como el olivino y la parte inferior de una mezcla de óxidos de magnesio, hierro y silicio.

La investigación sismológica ha demostrado que el núcleo tiene una capa exterior de unos 2.225 km de grosor con una densidad relativa media de 10. Esta capa es probablemente rígida y los estudios demuestran que su superficie exterior tiene depresiones y picos, y estos últimos se forman donde surge la materia caliente. Por el contrario, el núcleo interior, cuyo radio es de unos 1.275 km, es sólido. Se cree que ambas capas del núcleo se componen en gran parte de hierro con un pequeño porcentaje de níquel y de otros elementos. Las temperaturas del núcleo interior pueden llegar a los 6.650 ° C y se considera que su densidad media es de 13.

Edad y origen de la Tierra

La datación radiométrica ha permitido a los científicos calcular la edad de la Tierra en 4.650 millones de años. Aunque las piedras más antiguas de la Tierra datadas de esta forma, no tienen más de 4.000 millones de años, los meteoritos, que se corresponden geológicamente con el núcleo de la Tierra, dan fechas de unos 4.500 millones de años, y la cristalización del núcleo y de los cuerpos precursores de los meteoritos, se cree que ha ocurrido al mismo tiempo, unos 150 millones de años después de formarse la Tierra y el sistema solar.

Después de condensarse a partir del polvo cósmico y del gas mediante la atracción gravitacional, la Tierra habría sido casi homogénea y relativamente fría. Pero la continuada contracción de estos materiales hizo que se calentara, calentamiento al que contribuyó la radiactividad de algunos de los elementos más pesados. En la etapa siguiente de su formación, cuando la Tierra se hizo más caliente, comenzó a fundirse bajo la influencia de la gravedad. Esto produjo la diferenciación entre la corteza, el manto y el núcleo, con los silicatos más ligeros moviéndose hacia arriba para formar la corteza y el manto y los elementos más pesados, sobre todo el hierro y el níquel, sumergiéndose hacia el centro de la Tierra para formar el núcleo. Al mismo tiempo, la erupción volcánica, provocó la salida de vapores y gases volátiles y ligeros de manto y corteza. Algunos eran atrapados por la gravedad de la Tierra y formaron la atmósfera primitiva, mientras que el vapor de agua condensado formó los primeros océanos del mundo.

Campo Magnético

El rápido movimiento giratorio y el núcleo de hierro y níquel de nuestro planeta generan un campo magnético extenso, que, junto con la atmósfera, nos protege de casi todas las radiaciones nocivas provenientes del Sol y de otras estrellas. La atmósfera de la Tierra nos protege de meteoritos, la mayoría de los cuales se desintegran antes de que puedan llegar a la superficie.

De nuestros viajes al espacio, hemos aprendido mucho acerca de nuestro planeta hogar. El primer satélite americano, el Explorer 1, descubrió una zona de intensa radiación, ahora llamada los cinturones de radiación Van Allen. Esta capa está formada por partículas cargadas en rápido movimiento que son atrapadas por el campo magnético de la Tierra en una región con forma de dona rodeando el ecuador. Otros descubrimientos de los satélites muestran que el campo magnético de nuestro planeta está distorsionado en forma de una gota debido al viento solar. También sabemos ahora que nuestra fina atmósfera superior, que antes se creía era calmada y sin incidentes, hierve con actividad creciendo de día y contrayéndose en las noches. Afectada por los cambios en la actividad solar, la atmósfera superior contribuye al tiempo y clima en la Tierra.

Además de afectar el clima en la Tierra, la actividad solar genera un fenómeno visual dramático en nuestra atmósfera. Cuando las partículas cargadas del viento solar se quedan atrapadas en el campo magnético de la Tierra, chocan con moléculas de aire sobre los polos magnéticos de nuestro planeta. Estas moléculas de aire entonces empiezan a emitir luz y son conocidas como las auroras o las luces del norte y del sur.

El estudio de la intensidad del campo magnético de la Tierra es valioso desde el punto de vista de la ciencia pura y de la ingeniería y también para la prospección geológica de minerales y de fuentes de energía. Las mediciones de intensidad se hacen con instrumentos llamados magnetómetros, que determinan la intensidad total del campo y las intensidades en dirección horizontal y vertical. La intensidad del campo magnético de la Tierra varía en diferentes puntos de su superficie. En las zonas templadas asciende a unos 48 amperios/metro, de los cuales un tercio se da en dirección horizontal.

Recientes estudios de magnetismo remanente (residual) en rocas y de las anomalías magnéticas de la cuenca de los océanos han demostrado que el campo magnético de la Tierra ha invertido su polaridad por lo menos 170 veces en los pasados 100 millones de años. El conocimiento de estas modificaciones, datables a partir de los isótopos radiactivos de las rocas, ha tenido gran influencia en las teorías de la deriva continental y la extensión de las cuencas oceánicas.

El fenómeno del magnetismo terrestre es el resultado del hecho de que toda la Tierra se comporta como un enorme imán. El físico y filósofo natural inglés William Gilbert fue el primero que señaló esta similitud en 1600, aunque los efectos del magnetismo terrestre se habían utilizado mucho antes en las brújulas primitivas.

Polos magnéticos

Los polos magnéticos de la Tierra no coinciden con los polos geográficos de su eje. El polo norte magnético se sitúa hoy cerca de la costa oeste de la isla Bathurst en los Territorios del Noroeste en Canadá, casi a 1.290 km al noroeste de la bahía de Hudson. El polo sur magnético se sitúa hoy en el extremo del continente antártico en Tierra Adelia, a unos 1.930 km al noreste de Little America (Pequeña América).

Las posiciones de los polos magnéticos no son constantes y muestran notables cambios de año en año. Las variaciones en el campo magnético de la Tierra incluyen una variación secular, el cambio en la dirección del campo provocado por el desplazamiento de los polos. Esta es una variación periódica que se repite después de 960 años. También existe una variación anual más pequeña, al igual que se da una variación diurna, o diaria, que sólo es detectable con instrumentos especiales.

La Luna es el satélite natural de la Tierra. El diámetro de la Luna es de unos 3.480 km (aproximadamente una cuarta parte del de la Tierra). La masa de la Tierra es 81 veces mayor que la de la Luna. Por tanto, la densidad media de la Luna es de sólo las tres quintas partes de la densidad de la Tierra, y la gravedad en la superficie lunar es un sexto de la de la Tierra.

La Luna orbita a la Tierra a una distancia media de 384.403 km y a una velocidad media de 3.700 km/h. Completa su vuelta alrededor de la Tierra en una órbita elíptica en 27 días, 7 horas, 43 minutos y 11,5 segundos con respecto a las estrellas. Para cambiar de una fase a otra similar, o mes lunar, la Luna necesita 29 días, 12 horas, 44 minutos y 2,8 segundos. Como la Luna tarda en dar una vuelta sobre su eje el mismo tiempo que en dar una vuelta alrededor de la Tierra, en realidad, siempre es la misma cara de la Luna la que se ve desde la Tierra. Aunque la Luna aparece brillante a simple vista, sólo refleja en el espacio alrededor del 7% de su luz.

La Luna vista desde la Tierra

Un observador sólo puede ver en cada momento determinado un 50% de la superficie total de la Luna. Sin embargo, de vez en cuando se puede ver un 9% adicional alrededor del borde aparente debido al balanceo relativo de la Luna llamado libración. Esto sucede a causa de las ligeras diferencias en el ángulo de visión desde la Tierra de las diferentes posiciones relativas de la Luna a lo largo de su órbita elíptica inclinada.

La Luna muestra fases cambiantes a medida que se mueve en su órbita alrededor de la Tierra. La mitad de la Luna está siempre bajo la luz del Sol, de la misma forma que en la mitad de la Tierra es de día mientras que en la otra mitad es de noche. Las fases de la Luna dependen de su posición con respecto al Sol en un instante dado. En la fase llamada Luna nueva, la cara que la Luna presenta a la Tierra está completamente en sombra. Aproximadamente una semana más tarde la Luna entra en su primer cuarto, mostrando la mitad del globo iluminado; siete días después la Luna muestra toda su superficie iluminada, será la Luna llena; otra semana más tarde, el último cuarto, la Luna vuelve a mostrar medio globo iluminado. El ciclo completo se repite cada mes lunar. Es Luna llena cuando está mas lejos del Sol que de la Tierra; es Luna nueva cuando está más cerca. La Luna está en cuarto menguante en su paso de Luna llena a nueva y en cuarto creciente en su paso de nuevo a Luna llena. Las temperaturas de su superficie son extremas, van desde un máximo de 127 ° C al mediodía lunar hasta un mínimo de -173 ° C justo antes del amanecer lunar.

Superficie

En la antigüedad, los observadores de la Luna creían que las regiones oscuras de su superficie eran océanos, dándole el nombre latino de mare ("mar"), que se sigue utilizando todavía; las regiones más brillantes se consideraron continentes. Nuevas observaciones y exploraciones de la Luna han aportado un conocimiento mucho más amplio y específico. Desde el renacimiento, los telescopios han revelado numerosos detalles lunares, y las naves espaciales han contribuido en enorme medida a este conocimiento. Entre las características discernibles en la superficie de la Luna están los cráteres, cadenas de montañas, llanuras o mares, fracturas, cimas, fisuras lunares y radios o "rayos". El mayor cráter es el llamado Bailly, de 295 km de ancho y 3.960 m de profundidad. El mar más grande es el Mare Imbrium (mar de las Lluvias), de 1.200 km de ancho. Las montañas más altas, en las cordilleras Leibniz y Doerfel, cerca del polo sur de la Luna, tienen cimas de hasta 6.100 m de altura, comparables a la cordillera del Himalaya. En observaciones con telescopio se han determinado cráteres de tamaño tan pequeño como de 1,6 km. El origen de los cráteres lunares se ha debatido durante mucho tiempo; las últimas evidencias muestran que la mayor parte de ellos se formaron por impactos explosivos de meteoritosde gran velocidad o pequeños asteroides, sobre todo durante la era primaria de la historia lunar, cuando el sistema solarcontenía todavía muchos de estos fragmentos. Sin embargo, algunos cráteres, fisuras lunares y cimas presentan características de indiscutible origen volcánico.

Origen de la Luna

Antes de la era moderna de la astronáutica, los científicos desarrollaron tres teorías principales sobre el origen de la Luna: fisión de la Tierra, formación en una órbita cercana a la Tierra y formación lejos de la Tierra. En 1975, después de analizar las rocas lunares y primeros planos de la Luna, los científicos propusieron la teoría del impacto planetesimal, que ha llegado a ser la teoría con más probabilidades de verosimilitud sobre la formación de la Luna.

Formación por fisión de la Tierra

La versión moderna de esta teoría propone que la Luna fue expulsada espontáneamente de la Tierra cuando ésta estaba recién formada y giraba con rapidez sobre su eje. Esta hipótesis gana adeptos, en parte porque la densidad de la Luna es la misma que la de las rocas del manto superior de la Tierra, justo debajo de la corteza. Sin embargo, esta teoría presenta una dificultad: el momento angular de la Tierra, para lograr inestabilidad rotacional, tendría que haber sido mayor que el momento angular del sistema actual Tierra-Luna. De acuerdo con los principios básicos de la mecánica, la cantidad total del momento angular en un sistema aislado como lo es el sistema Tierra-Luna permanece constante.

Formación en una órbita cercana a la Tierra

Esta teoría propone que la Tierra, la Luna y los demás cuerpos del sistema solar se condensaron independientemente de la enorme nube de gases fríos y partículas sólidas que constituyeron la nebulosa solar primordial. Gran parte de este material, finalmente, se acumuló en el centro para formar el Sol.

Formación de la Luna lejos de la Tierra

De acuerdo con esta teoría, se supone la formación independiente de la Tierra y la Luna, como en la anterior hipótesis; sin embargo, establece que la Luna se formó en un lugar diferente del sistema solar, alejado de la Tierra. Se presupone entonces que las órbitas de la Tierra y la Luna las arrastraron y aproximaron, de forma que la Luna fue atraída a una órbita permanente alrededor de la Tierra.

Impacto planetesimal

Esta teoría, que se publicó por primera vez en 1975, presupone que en el principio de la historia de la Tierra, hace unos 4.000 millones de años, la Tierra fue golpeada por un enorme cuerpo llamado planetésimo, del tamaño de Marte. El impacto catastrófico expulsó partes de la Tierra y de este cuerpo, situándolas en la órbita de la Tierra, donde los detritos del impacto se reunieron formando la Luna. Esta hipótesis, después de numerosas investigaciones con las rocas lunares durante las décadas de 1970 y 1980, se ha convertido en la teoría más aceptada sobre el origen de la Luna. El mayor problema de esta teoría es que parecería necesario que los materiales terrestres se hubieran fundido totalmente después del impacto, mientras que la geoquímica de la Tierra no indica una fusión tan radical.

Exploración lunar

A lo largo de los siglos XIX y XX, las exploraciones visuales con telescopios de gran potencia han permitido obtener un conocimiento muy amplio del lado visible de la Luna. El lado de la Luna no visible, se mostró al mundo por primera vez en octubre de 1959 con las fotografías tomadas por la nave espacial soviética Lunik 3. Estas fotografías mostraron que el lado lejano de la Luna es similar al cercano, excepto en que los grandes mares lunares están ausentes. Ahora sabemos que los cráteres cubren toda la Luna, desde los de tamaños gigantescos, rodeando los mares, hasta los de tamaños microscópicos. Las fotografías de las naves espaciales estadounidenses -Rangers 7, 8 y 9 y Orbiters 1 y 2- de 1964 y 1966 apoyan estas conclusiones. La Luna tiene aproximadamente 3 billones de cráteres de más de 1 m de diámetro.

Los alunizajes con éxito de las sondas espaciales no tripuladas de la serie estadounidense Surveyor y de la soviética Luna en la década de 1960 y, finalmente, los alunizajes tripulados en la superficie lunar del programa estadounidense Apolo, hicieron realidad las mediciones directas de las propiedades físicas y químicas de la Luna. Los astronautas del Apolo recogieron rocas lunares, sacaron miles de fotografías y colocaron una serie de instrumentos en la Luna que enviaron información a la Tierra por telemetría de radio. Estos instrumentos midieron la temperatura y la presión del gas en la superficie lunar; la corriente de calor desde el interior de la Luna; las moléculas e iones de los gases calientes emitidos desde la atmósfera del Sol, es decir, el viento solar; los campos magnéticos y gravitacionales de la Luna, y las vibraciones sísmicas de la superficie lunar causadas por los llamados terremotos de la Luna, desprendimientos de tierra e impactos de meteoritos. Mediante los rayos láser se midió la distancia exacta entre la Tierra y la Luna.

Después de las mediciones de las rocas lunares se ha sabido que la Luna tiene 4.600 millones de años, más o menos los mismos que la Tierra y que el resto del sistema solar. Las rocas de los mares lunares se formaron cuando la roca derretida se solidificó hace entre 3.160 y 3.960 millones de años. Estas rocas se parecen a los basaltos terrestres, un tipo de roca volcánica muy extendida en la Tierra, pero con algunas diferencias importantes. Las pruebas indican que las regiones montañosas lunares, o continentes, pueden estar formadas de una roca ígnea plutónica menos densa llamada anortosita, formada casi por completo por plagioclasa mineral. Otros tipos de muestras lunares importantes incluyen los cristales, brechas (ensamblajes complejos de fragmentos de rocas cementados conjuntamente por la acción del calor o la presión, o por ambos) y suelo o regolita (fragmentos rocosos muy finos producidos por miles de millones de años de bombardeos de meteoritos).

El campo magnético de la Luna no es tan intenso o amplio como el de la Tierra. Algunas rocas lunares son débilmente magnéticas, lo que indica que se solidificaron en un campo magnético más potente. Las mediciones magnéticas, entre otras, muestran una temperatura interna de la Luna de hasta 1.600 ° C, que está por encima del punto de fusión de la mayor parte de la rocas lunares. Los registros sísmicos sugieren que algunas regiones cerca del centro lunar pueden ser líquidas.

Los sismómetros situados en la superficie lunar han registrado, también, señales que muestran impactos de meteoritos, en una proporción de 70 a 150 por año, y con masas desde 100 gramos hasta 1.000 kilogramos. Por tanto, la Luna sigue siendo bombardeada por meteoritos (aunque no con tanta frecuencia como en el pasado), lo que puede resultar problemático para los ingenieros que diseñan bases permanentes en la superficie lunar. La superficie está cubierta por una capa de grava, que puede tener una profundidad de varios kilómetros en los mares y una profundidad todavía desconocida en las regiones montañosas. Se cree que esta grava se ha formado por los impactos de meteoritos.

La atmósfera de la Luna es tan tenue que no se puede reproducir ni en las mejores cámaras de vacío situadas en la Tierra.

Los seis alunizajes tripulados a la Luna -las misiones Apolo 11, 12 y de la 14 a la 17- trajeron a la Tierra muestras de roca lunar y de suelo, en total 384 kg. Y no fue hasta la última misión, el Apolo 17, cuando entre la tripulación de astronautas se incluyó a un geólogo, H. H. Schmitt. Invirtió 22 horas en explorar la región Taurus-Littrow Valley y cubrió 35 km en un vehículo lunar. Todavía hoy continúan los análisis intensivos sobre los datos y las rocas obtenidas en las misiones lunares.

A finales de 1996, un grupo de científicos estadounidenses anunció el descubrimiento de la posible existencia de hielo (probablemente agua helada) en un cráter de la cara oscura de la Luna. El descubrimiento se basó en las señales de radar enviadas en 1994 por la sonda Clementine a la superficie lunar. El 5 de marzo de 1998, la NASA anunció que la sonda espacial Lunar Prospector -lanzada dos meses antes- había confirmado la existencia de agua helada en el satélite. La sonda estaba equipada con un espectrómetro de neutrones que facilitó las pruebas científicas; el espectrómetro registró los neutrones que emanaban de los polos de la Luna cuando los átomos de hidrógeno o las moléculas de agua eran bombardeadas por los rayos cósmicos. Los investigadores creen que el agua (entre 10 y 300 millones de toneladas) se originó por el impacto de cometas y asteroides helados que han bombardeado la superficie lunar durante 2.000 millones de años. No obstante, fuentes de la NASA han comentado que, aunque estas pruebas son altamente fiables, la evidencia definitiva se obtendrá de muestras físicas, tomadas sobre el terreno.

Un eclipse es el oscurecimiento de un cuerpo celeste producido por otro cuerpo celeste. Hay dos clases de eclipses que implican a la Tierra: los de Luna, o eclipses lunares, y los de Sol, o eclipses solares. Un eclipse lunar tiene lugar cuando la Tierra se encuentra entre el Sol y la Luna y su sombra oscurece la Luna. El eclipse solar se produce cuando la Luna se encuentra entre el Sol y la Tierra y su sombra se proyecta sobre la superficie terrestre. Los tránsitos y ocultaciones son fenómenos astronómicos similares pero no tan espectaculares como los eclipses debido al pequeño tamaño de los cuerpos celestes que se interponen entre la Tierra y un astro brillante.

Eclipse de Luna

Iluminada por el Sol, la Tierra proyecta una sombra alargada en forma de cono en el espacio. En cualquier punto de este cono la luz del Sol está completamente oscurecida. Rodeando este cono de sombra, llamado umbra, se encuentra un área de sombra parcial, llamada penumbra.

Un eclipse total de Luna tiene lugar cuando la Luna penetra por completo en el cono de sombra. Si penetra directamente en el centro, se oscurecerá alrededor de 2 horas; si no penetra en el centro, el periodo de fase total es menor, y si la Luna se mueve solamente por el límite del cono de sombra su oscuridad puede durar sólo un instante.

El eclipse parcial de Luna tiene lugar cuando solamente una parte de la Luna penetra en el cono de sombra y se oscurece. La extensión del eclipse parcial puede fluctuar desde una fase casi total, cuando la mayor parte de la Luna se oscurece, a un eclipse menor cuando sólo se ve una pequeña zona de sombra de la Tierra al pasar la Luna. Históricamente, el primer indicio que se tuvo del perfil de la Tierra fue al ver su sombra circular pasando a través de la cara de la Luna.

Antes de penetrar la Luna en el cono de sombra, tanto en el eclipse total como en el parcial, está dentro de la zona de penumbra y su superficie se va haciendo visiblemente más oscura. La parte que penetra en el cono de sombra aparece casi negra, pero durante el eclipse total el disco lunar no está totalmente oscuro, sino que permanece ligeramente iluminado con una luz rojiza: los rayos solares son refractados por la atmósfera terrestre y penetran en el cono de sombra. Si se produce un eclipse lunar cuando la Tierra está cubierta con una densa capa de nubes, éstas impiden la refracción de la luz; en esa situación la superficie de la Luna se hace invisible durante la fase total.

Eclipse de Sol

Los eclipses totales de Sol tienen lugar cuando la sombra de la Luna alcanza la Tierra. En algún momento, cuando la Luna pasa entre la Tierra y el Sol, su sombra no alcanza la Tierra. En esos momentos tiene lugar un eclipse anular durante el que aparece un anillo brillante del disco solar alrededor del disco negro de la Luna.

La duración máxima de un eclipse total de Sol es de unos 7,5 minutos, pero estos eclipses son raros y sólo tienen lugar una vez cada varios miles de años. Un eclipse total, normalmente, se puede ver durante unos tres minutos desde un punto en el centro del recorrido de su fase total.

En áreas fuera de la banda barrida por la sombra de la Luna, pero dentro de la penumbra, tienen lugar eclipses parciales y el Sol sólo se oscurece parcialmente.

Al principio de un eclipse total, la Luna comienza a moverse a través del disco solar aproximadamente una hora antes de su fase total. La iluminación del Sol disminuye gradualmente y durante la fase total (o cerca de ella) declina a la intensidad del brillo de la luz de la Luna. Esta luz residual la produce en gran medida la corona del Sol, la parte más exterior de la atmósfera solar. Cuando la superficie del Sol se va estrechando hasta una pequeña franja, se hace visible la corona. Un momento antes de que el eclipse sea total, en esta franja destellan brillantes puntos de luz llamados perlas de Baily. Estos puntos son producidos por los rayos del Sol al atravesar los valles y las irregularidades de la superficie lunar. Las perlas de Baily son también visibles en el momento que finaliza la fase total del eclipse (reaparición). Exactamente un momento antes, un momento después y algunas veces en la fase total se pueden ver estrechas bandas de sombras en movimiento sobre objetos en la superficie terrestre. El origen de estas bandas de sombra no se conoce con exactitud, pero se piensa que están producidas por la refracción irregular de la luz en la atmósfera terrestre. Antes y después de la fase total, un observador situado en una colina o en una aeronave puede ver la sombra de la Luna moviéndose en dirección Este a través de la superficie de la Tierra como la sombra de una nube pasando rápidamente.

Frecuencia de los eclipses

Si la órbita de la Tierra estuviera en el mismo plano que la órbita de la Luna, tendrían lugar dos eclipses totales durante cada mes lunar, un eclipse lunar por cada Luna llena, y un eclipse solar por cada Luna nueva. Sin embargo, las dos órbitas están inclinadas y, por tanto, los eclipses tienen lugar sólo cuando la Luna o el Sol están a algunos grados de los dos puntos, llamados nodos, donde se cruzan las órbitas.

Periódicamente, el Sol y la Luna vuelven a la misma posición relativa de uno de los nodos y como resultado de esto los eclipses se repiten a intervalos regulares.

Observación

Sólo durante un eclipse total de Sol se pueden analizar muchos problemas astronómicos. Entre ellos se encuentran el tamaño y la composición de la corona solar y la refracción de los rayos de luz al pasar cerca del Sol debido a su campo gravitatorio. El gran brillo del disco solar y la iluminación producida por el Sol de la atmósfera de la Tierra hacen imposible las observaciones de la corona solar excepto durante un eclipse solar. El coronógrafo, un telescopio fotográfico, permite la observación directa del borde del disco solar en todo momento. En la actualidad, las observaciones científicas sobre los eclipses solares son muy valiosas, especialmente cuando el recorrido del eclipse barre amplias superficies. Una red compleja de observatorios especiales puede proporcionar a los científicos datos que aumenten la información sobre cómo afectan a la atmósfera de la Tierra las pequeñas variaciones del Sol y mejorar así las predicciones de las erupciones solares.

 

Una estrella es un gran cuerpo celeste compuesto de gases calientes que emiten radiación electromagnética, en especial luz, como resultado de las reacciones nucleares que tienen lugar en su interior. El Soles una estrella. Con la única excepción del Sol, las estrellas parecen estar fijas, manteniendo la misma forma en los cielos año tras año. En realidad, las estrellas están en rápido movimiento, pero a distancias tan grandes que sus cambios relativos de posición se perciben sólo a través de los siglos.

El número de estrellas visibles a simple vista desde la Tierrase ha calculado en un total de 8.000, de las cuales 4.000 están en el hemisferio norte del cielo y 4.000 en el hemisferio sur. En cualquier momento durante la noche, en ambos hemisferios sólo son visibles unas 2.000 estrellas. A las demás las ocultan la neblina atmosférica, sobre todo cerca del horizonte, y la pálida luz del cielo. Los astrónomos han calculado que el número de estrellas de la Vía Láctea, la galaxiaa la que pertenece el Sol, asciende a cientos de miles de millones. A su vez, la Vía Láctea sólo es una de los varios cientos de millones de galaxias visibles mediante los potentes telescopios modernos. Las estrellas individuales visibles en el cielo son las que están más cerca del sistema solaren la Vía Láctea.

La estrella más cercana a nuestro sistema solar es Proxima Centauri, uno de los componentes de la estrella triple Alpha Centauri, que está a unos 40 billones de kilómetro de la Tierra. En términos de velocidad de la luz, patrón utilizado por los astrónomos para expresar la distancia, este sistema de estrella triple está a unos 4,29 años luz; la luz, que viaja a unos 300.000 km/s, tarda más de cuatro años y tres meses en llegar desde esta estrella hasta la Tierra.

Descripción física

El Sol es una estrella típica, con una superficie visible llamada fotosfera, una atmósfera saturada de gases calientes y por encima de ellas una corona más difusa y una corriente de partículas denominada viento solar (estelar). Las áreas más frías de la fotosfera, que en el Sol se llaman manchas solares, probablemente se encuentren en otras estrellas comunes; su existencia en algunas grandes estrellas próximas se ha deducido mediante interferometría. La estructura interna del Sol y de otras estrellas no se puede observar de forma directa, pero hay estudios que indican corrientes de convección y una densidad y una temperatura que aumentan hasta alcanzar el núcleo, donde tienen lugar reacciones termonucleares. Las estrellas se componen sobre todo de hidrógeno y helio, con cantidad variable de elementos más pesados.

Las estrellas más grandes que se conocen son "supergigantes", con diámetros 400 veces mayores que el del Sol, en tanto que las estrellas conocidas como "enanas blancas" pueden tener diámetros de sólo una centésima del diámetro del Sol. Sin embargo, las estrellas gigantes suelen ser difusas y pueden tener una masa 40 veces mayor que la del Sol, mientras que las enanas blancas son muy densas a pesar de su pequeño tamaño. Puede haber estrellas con una masa 1.000 veces mayor que la del Sol y, a escala menor, bolas de gas caliente demasiado pequeñas para desencadenar reacciones nucleares, denominadas enanas. Un objeto que puede ser de este tipo (una enana marrón) fue observado por primera vez en 1987, y desde entonces se han detectado otros.

El brillo de las estrellas se describe en términos de magnitud. Las estrellas más brillantes pueden ser hasta 1.000.000 de veces más brillantes que el Sol; las enanas blancas son unas 1.000 veces menos brillantes.

Catálogos de estrellas

Nebulosa del Cangrejo
Ver imagen de alta calidadVer imagen de alta calidad (37kb)

Excepto las relativamente pocas estrellas visibles a simple vista, a las estrellas se las denomina mediante números de acuerdo con los atlas y catálogos de estrellas realizados por los observatorios astronómicos. El primer catálogo de estrellas fue obra del astrónomo griego Tolomeo en el siglo II d.C. Conocido como Almagesto, enumeraba los nombres y las posiciones de 1.028 estrellas. En 1603, el astrónomo alemán Johann Bayer publicó en Augsburgo un atlas estelar. Bayer mencionaba una cantidad de estrellas mucho mayor que Tolomeo y las designaba mediante una letra griega y la constelación, o configuración celeste, donde aparece la estrella.

En el siglo XVIII, el astrónomo inglés John Flamsteed también publicó un atlas en el que las estrellas eran denominadas según su constelación, pero Flamsteed las diferenciaba con números en vez de letras. Este atlas contenía la situación de unas 3.000 estrellas. El primer catálogo de estrellas moderno, realizado en 1862 por el Observatorio de Bonn, en Alemania, contiene la situación de más de 300.000 estrellas.

En 1887 un comité internacional comenzó a trabajar en un catálogo detallado de estrellas. Fue realizado a partir de fotografías tomadas por unos 20 observatorios, incluyendo 21.600 placas individuales, que muestran de 8 a 10 millones de estrellas.

Los catálogos de estrellas modernos no son libros, sino copias de placas fotográficas de cristal tomadas con telescopios de gran alcance. El primer informe importante de este tipo se completó a mediados de los años cincuenta, utilizando el telescopio Schmidt de 1,22 m en Monte Palomar (Estados Unidos). Cada placa cubre una región del cielo de 6° por 6°, y 1.035 mapas cubren todo el cielo visible desde este lugar. El conjunto de mapas correspondiente al sur del cielo se ha realizado utilizando telescopios Schmidt en Australia y Chile.

Estrellas dobles

Más de la mitad de las estrellas del firmamento son, de hecho, miembros de sistemas de dos estrellas o de sistemas de estrellas múltiples. Algunas estrellas dobles o binarias cercanas aparecen separadas cuando se las observa a través de telescopios, pero a la mayoría se las detecta como dobles sólo por medios espectroscópicos. Las estrellas dobles están compuestas por dos estrellas próximas y que giran en una órbita alrededor de su centro de masa común. Estas estrellas dobles fueron descritas por primera vez en 1803 por el astrónomo británico William Herschel.

Las binarias espectroscópicas, identificadas por primera vez en 1889, no son separables visualmente por medio del telescopio, pero se pueden reconocer duplicando o ensanchando las líneas del espectro cuando gira el par de estrellas. Cuando uno de los componentes se aleja de la Tierra, el otro se aproxima a ella; las líneas del espectro de la estrella que se aleja se desplazan hacia el rojo, mientras que las de la estrella que avanza se desplazan hacia el violeta.

Otro tipo de estrella doble es la llamada variable eclipsante. Las estrellas de este tipo están formadas por un componente más brillante y otro más oscuro. Vista desde la Tierra, cuando la órbita es tal que la estrella más pálida eclipsa a la más brillante, la intensidad de la luz que llega desde la estrella oscila con regularidad.

Las investigaciones han demostrado que una de cada dos o tres estrellas visibles con telescopio de moderado tamaño es una estrella doble. Miles de binarias visuales y muchos cientos de binarias espectroscópicas han sido estudiadas con gran detenimiento. Estas estrellas son la fuente principal de información sobre las masas estelares.

Estrellas variables

Es probable que todas las estrellas, incluido el Sol, varíen ligeramente de brillo con cierta periodicidad. Estas variaciones apenas son mensurables. Sin embargo, algunas estrellas cambian mucho de brillo y se les denomina estrellas variables. Hay muchos tipos. Algunas repiten los ciclos con una precisión casi de reloj; otras son muy irregulares. Algunas necesitan sólo horas o días para volver a un brillo determinado, otras necesitan años. El brillo de estas estrellas puede cambiar de modo casi imperceptible o de forma violenta.

Las variables más espectaculares son las novas y supernovas. Las novas pueden llegar a brillar hasta 200.000 veces más que el Sol perdiendo quizá una centésima o una milésima del 1% de la masa del Sol a velocidades por encima de los 960 km/s. Algunas novas repiten este proceso cada cierto tiempo hasta que pierden demasiada masa para continuar.

Aunque las supernovas tienen un nombre similar, son un fenómeno mucho más catastrófico y no periódico. Representan la explosión real de una estrella que a veces brilla durante unos pocos días unos 100.000 millones de veces más que el brillo real del Sol antes de desvanecerse del todo. Dejan tras de sí restos que se expanden y se contemplan como nubes brillantes de gas o nebulosas. Un ejemplo de esto es la nebulosa del Cangrejo, observada por primera vez desde la Tierra como supernova en 1054. A veces también queda un púlsar como vestigio en el centro de los restos. Las novas se presentan con frecuencia en la Vía Láctea, quizá una de cada dos de las que se observan cada año, pero las supernovas son mucho más raras. La supernova más reciente de la Vía Láctea apareció en 1604, aunque hubo una en una galaxia cercana que en 1987 llamó mucho la atención.

Muchas estrellas variables cambian su brillo porque oscilan, esto es, se expanden y se contraen de forma parecida a un globo. Un tipo importante, llamadas variables cefeidas (por Delta Cefei, de la constelación Cefeo), repiten sus ciclos de brillo con bastante exactitud. Sus periodos oscilan de un día a cientos de días, siendo todos cientos de veces más luminosos que el Sol. Cuanto más largo sea el periodo de una variable cefeida, mayor será el brillo medio de la estrella. Esta relación entre el periodo y la luminosidad, descubierta por la astrónoma estadounidense Henrietta Leavitt, ha resultado inestimable para medir distancias estelares, en particular las de las galaxias cercanas. Para medir una distancia sólo se necesita observar el brillo medio aparente de una cefeida. Las novas y especialmente las supernovas también son medidas de distancia importantes porque su increíble brillantez en su luz máxima hace que se las pueda observar a distancias enormes.

Las estrellas variables son de un interés extraordinario porque su variación suele producirse por alguna peculiaridad de su estructura interna que desarrolla con el tiempo. De este modo, las estrellas variables pueden aportar información sobre la evolución estelar. Por ejemplo, las supernovas han consumido su combustible nuclear y deben expulsar materia porque se hacen inestables cuando sufren un colapso gravitacional.

La variable eclipsante, mencionada en la sección anterior, cambia más por causas externas que por causas internas. Es típica la estrella Algol, en la constelación Perseo. Algol es una estrella doble formada por una componente brillante y otra más pálida que giran una alrededor de la otra en un plano casi en la línea de visión desde la Tierra. Cuando la componente más oscura eclipsa a la más brillante, el brillo aparente del par cae de modo abrupto; una disminución semejante pero menos marcada se da cuando la componente más brillante eclipsa a la más oscura. Los astrónomos han observado miles de variables eclipsantes, valiosas para medir las masas estelares.

Evolución

Nebulosa de Orión

Las teorías sobre la evolución estelar se basan fundamentalmente en pruebas obtenidas de estudios de los espectros relacionados con la luminosidad. Las observaciones realizadas han demostrado que muchas de las estrellas conocidas se pueden clasificar en una secuencia regular en la que las estrellas más brillantes son las más calientes y las más pequeñas, las más frías. Esta serie de estrellas aparece como una banda conocida como la secuencia principal en el diagrama temperatura-luminosidad desarrollado por el astrónomo holandés Ejnar Hertzsprung y el astrónomo estadounidense Henry Norris Russell y conocido como diagrama Hertzsprung-Russell. Otros grupos de estrellas que aparecen en el diagrama incluyen las estrellas gigantes y enanas antes mencionadas.

Una estrella comienza su ciclo como una gran masa de gas relativamente fría. La contracción de este gas y el consiguiente aumento de temperatura continúa hasta que la temperatura interior de la estrella alcanza un valor de 1.000.000 ° C. En este punto tienen lugar reacciones nucleares, cuyo resultado es que los núcleos de los átomos de hidrógeno se combinan con los deuterones (núcleos de los llamados átomos de hidrógeno pesado) para formar núcleos de helio. Esta reacción libera grandes cantidades de energía y se detiene la nueva contracción de la estrella.

Cuando finaliza la liberación de energía de la reacción deuterón-núcleo de hidrógeno, la contracción comienza de nuevo y la temperatura de la estrella vuelve a aumentar hasta que alcanza un punto en el que se puede dar una reacción entre el hidrógeno y el litio y otros metales ligeros presentes en el cuerpo de la estrella. De nuevo se libera energía y la contracción se detiene. Cuando el litio y otros materiales ligeros se consumen, la contracción se reanuda y la estrella entra en la etapa final del desarrollo en la cual el hidrógeno se transforma en helio a temperaturas muy altas merced a la acción catalítica del carbono y el nitrógeno. Esta reacción termonuclear es característica de la secuencia principal de estrellas mencionada antes y continúa hasta que se consume todo el hidrógeno que hay. La estrella se hincha gradualmente y se convierte en una gigante roja. Alcanza su mayor tamaño cuando todo su hidrógeno central se ha convertido en helio. Si continúa brillando, la temperatura del centro debe subir lo suficiente como para producir la fusión de los núcleos de helio. Durante este proceso es probable que la estrella se haga mucho más pequeña y más densa. Cuando ha gastado todas las posibles fuentes de energía nuclear, se contrae de nuevo y se convierte en una enana blanca. Esta etapa final puede estar marcada por las explosiones estelares conocidas como novas. Cuando una estrella se despoja de su cubierta exterior por explosión como una nova o una supernova, devuelve al medio interestelar elementos más pesados que el hidrógeno que ha sintetizado en su interior. Las generaciones futuras de estrellas formadas a partir de este material comenzarán por tanto su vida con un surtido más rico de elementos más pesados que las anteriores generaciones de estrellas. Las estrellas que se despojan de sus capas exteriores de una forma no explosiva se convierten en nebulosas planetarias, estrellas viejas rodeadas por esferas de gas que irradian en una gama múltiple de longitudes de onda.

Las estrellas con una masa muchas veces mayor que la del Sol recorren su ciclo de evolución con rapidez según los patrones astronómicos, quizá un lapso de unos pocos millones de años desde su nacimiento a la explosión de una supernova. Los restos de la estrella pueden ser una estrella de neutrones. Sin embargo, existe un límite para el tamaño de las estrellas de neutrones, más allá del cual estos cuerpos se ven obligados a contraerse hasta que se convierten en un agujero negro, del que no puede escapar ninguna radiación. Estrellas típicas como el Sol pueden persistir durante muchos miles de millones de años. El destino final de las enanas de masa baja es desconocido, excepto que cesan de irradiar de forma apreciable. Lo más probable es que se conviertan en cenizas o enanas negras. Para la discusión de los procesos nucleares de la evolución estelar.

El nacimiento de las estrellas está íntimamente conectado con la presencia de granos de polvo y moléculas, como en la nebulosa Orión en nuestra galaxia. Aquí, el hidrógeno molecular (H2) está condensado a altas densidades y temperaturas, y sus moléculas están disociadas. Entonces, el hidrógeno atómico vuelve a derrumbarse y forma un denso núcleo estelar que atrae gravitacionalmente el material circundante. El caliente núcleo disipa la nube de polvo de las moléculas sobrecargadas y surge la nueva estrella. Un posterior calentamiento gravitacional aumenta la temperatura hasta que se pueden dar procesos nucleares. Las estrellas nacen, por lo general, en pequeños grupos en un extremo de una gran nube molecular. Sucesivas generaciones de estrellas se consumen cada vez más en el extremo de la nube, dejando un rastro de estrellas de edad creciente.

Se ha observado el nacimiento de estrellas en fotografías tomadas en una región del cielo durante un periodo de años. Modernas técnicas de ultravioletas, infrarrojos y radioastronomía han fijado con precisión otros lugares de formación de estrellas y han detectado signos de los procesos actuales que se están 


Entradas relacionadas:

Etiquetas:
cuanto se demoran los planetas en dar la vuelta al sol BUSCAR ECLIPSES EN LOS ULTIMOS 50 AÑOS Y CAUSA QUE ORIGINAN EN ESPAÑOLY CON IMAGENES cuantos kilometros aproximadamente cubrio en un momento determinado la zona de umbra otra teoria del origen del sistema solar escepto la catastrófica y la nebular la hidrosfera tiene una parte invisible Cual es el planeta que da vueltas tan rapido que se hincha en la linea del ecuador las estrellas y demas cuerpos de nuestras galaxia, llamada via lactea, permanesen juntas define posiciones sol bajo que planeta tarda mas en dar la vuelta al sol TEMA 12 DISTRIBUCION DE SEÑALES DE RADIOFRECUENCIA colores de los planetas del sistema solar son nubes de gas caliente que por lo general brilla ¿donde suelen aver estrellas o sistemas estelares rocas simaticas geografia teoria planetesimal da vueltas tan rapido se hincha en la linea de ecuador fase colisional resumen tema 1 el planeta tierra de geografia 3 de la eso cuantos kilometros cubrio, en un momento determinado, la zona de umbra que planeta se hincha en la linea del ecuador composicion solar que es la fase colisional teoria del impacto planetesimal cual es la temperatura interna y externa del sol lo mas inportante de la tierra y el universo geografia 3 de la eso QUE PLANETA TARDA MAS TIEMPO EN DAR UNA VUELTA ALREDEDOR DEL SOL origen del sistema solar cuantos dias tarda jupiter en dar la vuelta al sol CUANDO MIRAMOS LA TIERRA DESDE EL ESPACIO QUE PARTE DE LA LITOSFERA SE VE cuanto tiempo demoran los planetas en girar alrededor del sol en la actualidad, las observaciones científicas sobre los eclipses solares son muy valiosas, especialmente cuando el recorrido del eclipse barre grandes superficies. una red extensa de observatorios espaciales puede proporcionar a los científicos dat